TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

These TS 10th Class Maths Chapter Wise Important Questions Chapter 8 Similar Triangles given here will help you to solve different types of questions.

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Previous Exams Questions

Question 1.
Construct a triangle of sides 4.2 cm, 5.1 cm and 6 cm. Then construct a triangle similar to it, whose sides are \(\frac{2}{3}\) of corresponding sides of the first triangle. (A.P. Mar. ’15)
Solution:
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 19

  1. Draw a triangle ABC, with sides AB = 4.2 cm, BC = 5.1 cm, CA = 6 cm.
  2. Draw a ray BX making an acute angle with BC on the side opposite to vertex A.
  3. Locate 3 points B1, B2, B3 on BX so that BB1 = B1B2 = B2B3
  4. Join B3, C and draw a line through B2 parallel to B3C intersecting BC and C1.
  5. Draw a line through C1 parallel to CA intersect AB at A1.
  6. ∆A1BC1 is required triangle.

Question 2.
Is a square similar to a rectangle ? Justify your answer. (A.P. Mar.’15)
Solution:
In a square and rectangle, the corresponding angles are equal. But the corresponding sides are not proportional.
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 20
∴ A square and a rectangle are not similar.

Question 3.
In a ∆DEF, A, B and C are mid points of EF, FD and DE respectively. If the area of ∆DEF is 14.4 cm2 then find the area of ∆ABC. (T.S. Mar. ’15)
Solution:
Area of ∆ABC = 1/4 of area of ∆DEF
= 1/4 (14.4) = 3.6 cm2

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 4.
Observe the below diagram and find the values of x and y. (T.S. Mar. ’15)
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 21
Solution:
∆ABC ~ AEFC
\(\frac{\mathrm{x}}{6}\) = \(\frac{9}{15}\)
x = \(\frac{9 \times 6}{15}\) = \(\frac{18}{5}\) = 3.6 cm.
∆BDC ~ ABEF
\(\frac{\mathrm{x}}{9.6}\) = \(\frac{\mathrm{y}}{15}\)
⇒ y = \(\frac{3.6 \times 15}{9.6}\) = \(\frac{45}{8}\) = 5.625 cm

Question 5.
Observe the figure given below in ∆FQR if XY // PQ, \(\frac{\mathrm{PX}}{\mathrm{XR}}\) = \(\frac{5}{3}\) and QR = 7.2. Then find the length of RY. (T.S. Mar. ’15)
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 22
Solution:
XY || PQ
⇒ \(\frac{\mathrm{PX}}{\mathrm{XR}}\) = \(\frac{\mathrm{QY}}{\mathrm{YR}}\)
⇒ \(\frac{5}{3}\) + 1 = \(\frac{\mathrm{QY}}{\mathrm{RY}}\) + 1
⇒ \(\frac{8}{3}\) = \(\frac{\mathrm{QR}}{\mathrm{RY}}\)
⇒ RY = 7.2 × \(\frac{3}{8}\) = 2.7 cm.

Question 6.
Find the value of ‘x’ in the given figure where ∆ ABC ~ ∆ ADE. (T.S. Mar. ’15)
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 23
Solution:
∆ABC ~ ∆ADE
∴ \(\frac{\mathrm{AB}}{\mathrm{AD}}\) = \(\frac{\mathrm{BC}}{\mathrm{DE}}\) = \(\frac{\mathrm{AC}}{\mathrm{AE}}\) ;
BC = x, DE = 5, AE = 3, AC = 9
By substituting \(\frac{\mathrm{BC}}{\mathrm{DE}}\) = \(\frac{\mathrm{AC}}{\mathrm{AE}}\)
∴ \(\frac{\mathrm{x}}{5}\) = \(\frac{9}{3}\) ⇒ x = \(\frac{9 \times 5}{3}\) = 15
∴ x = 15 cm

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 7.
Construct a triangle of sides 5 cm, 6 cm, and 7 cm then construct a triangle similar to it, whose sides are \(\frac{2}{3}\) of the corresponding sides of the triangle. (T.S. Mar. ’15)
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 24
Solution:
Construction steps :

  1. Draw a triangle ∆ABC with sides AB = 5 cm, BC = 6 cm and CA = 7 cm.
  2. Draw a ray \(\overrightarrow{\mathrm{BX}}\) making an acute angle with BC on the side opposite to vertex A.
  3. Locate 3 points B1, B2, B3 on BX. So that BB1 = B1B2 = B2B3.
  4. Join B3, C and draw a line through B2 parallel to B3 C intersecting BC at C’.
  5. Draw a line through C’ parallel to CA intersect AB at A’.
  6. ∆A’B’C’ is required triangle.

Additional Questions

Question 1.
In a ∆ ABC, DE || BC and AD = \(\frac{1}{3}\) BD. If BC = 5.6 cm, find DE.
Solution:
Given DE || BC, AD = \(\frac{1}{3}\) BD, BC = 5.6 cm
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 1
AD = \(\frac{1}{3}\) BD ⇒ BD = 3 AD …………… (1)
From similar triangles, ABC and ADE
We have \(\frac{\mathrm{AD}}{\mathrm{AB}}\) = \(\frac{\mathrm{DE}}{\mathrm{BC}}\)
⇒ \(\frac{\mathrm{AD}}{\mathrm{AD}+\mathrm{DB}}\) = \(\frac{\mathrm{DE}}{5.6}\)
⇒ \(\frac{\mathrm{AD}}{\mathrm{AD}+3\mathrm{DB}}=\) = \(\frac{\mathrm{DE}}{5.6}\)
[∵ from (1) DB = BD = 3AD]
⇒ \(\frac{\mathrm{AD}}{4 \mathrm{AD}}\) = \(\frac{\mathrm{DE}}{5.6}\)
⇒ \(\frac{1}{4}\) = \(\frac{\mathrm{DE}}{5.6}\)
⇒ DE = \(\frac{5.6}}{4\)
∴ DE = 1.4 cm

Question 2.
In the adjacent figure ∆ABC ~ ∆AHK. If AK = 8 cm, BC = 4.5 cm and HK = 9 cm find AC.
Solution:
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 2
Given AK = 8 cm, BC 4.5 cm, HK from similar ∆les, ABC and AHK
We have \(\frac{\mathrm{AC}}{\mathrm{AK}}\) = \(\frac{\mathrm{BC}}{\mathrm{HK}}\)
AC = \(\frac{\mathrm{AK} \times \mathrm{BC}}{\mathrm{HK}}\)
= \(\frac{8 \times 4.5}{9}\)
= 8 × 0.5 = 4
∴ AC = 4 cm

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 3.
In the below given figure P and Q are points on the sides AB and AC respectively of ∆ABC such that AQ = 3 cm, QC = 5 cm and PQ || BC. Find the ratio of areas of ∆APQ and ∆ABC.
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 3
Solution:
Given AQ = 3 cm, QC = 5 cm and PQ || BC.
We know that by theorem,
Ratio of the areas of two similar triangles = Ratio of the squares of their corresponding sides
Now AC = AQ + QC = 3 + 5 = 8 cm
By Theorem \(\frac{\text { area of } \triangle \mathrm{APQ}}{\text { area of } \triangle \mathrm{ABC}}\) = \(\frac{(\mathrm{AQ})^2}{(\mathrm{AC})^2}\)
= \(\frac{3^2}{8^2}\)
= \(\frac{9}{64}\)
∴ Ratio of areas of ∆APQ and ∆ABC = 9 : 64

Question 4.
What value of (5) of x will make DE || AB, in the given figure ?
AD = 5x + 5, CD = x + 2 BE = 3x + 3, CE = x
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 4
Solution:
Given in ∆ ABC, DE || AB
AD = 5x + 5, CD = x + 2
BE = 3x + 3, CE = x
y Basic proportional theorem,
If DE || AB, then we have
\(\frac{\mathrm{CD}}{\mathrm{DA}}\) = \(\frac{\mathrm{CE}}{\mathrm{EB}}\)
⇒ \(\frac{x+2}{5 x+5}\) = \(\frac{x}{3 x+3}\)
⇒ (5x + 5) x = (x +2) (3x + 3)
⇒ 5x2 + 5x = 3x2 + 3x + 6x + 6
⇒ 5x2 – 3x2 + 5x – 3x – 6x – 6 = 0
⇒ 2x2 – 4x – 6 = 0
⇒ 2x2 – 6x + 2x – 6 = 0
⇒ 2x (x – 3) + 2(x – 3) = 0
⇒ (x – 3) + (2x + 2) = 0
⇒ x-3 = 0 or 2x + 2 = 0
⇒ x = 3 or 2x = -2
⇒ x = –\(\frac{2}{2}\) = -1
∴ The value of x = 3 will make DE || AB.

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 5.
∆ABC ~ ∆PQR and their areas are respectively 81 cm2 and 144 cm2. If QR = 16cm then find BC.
Solution:
\(\frac{\text { area of } \triangle \mathrm{ABC}}{\text { area of } \triangle \mathrm{DEF}}\) = \(\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^2\)
⇒ \(\frac{81}{144}\) = \(\left(\frac{\mathrm{BC}}{16}\right)^2\)
⇒ \(\frac{9}{12}\) = \(\frac{\mathrm{BC}}{16}\)
⇒ BC = \(\frac{9}{12}\) × 16 = \(\frac{144}{12}\) = 12
∴ BC = 12 cm.

Question 6.
∆ABC ~ ∆DEF, BC = 5 cm, EF = 6 cm and area of ∆DEF = 72 cm2. Determine the area of ∆ABC.
Solution:
Given ∆ABC ~ ∆DEF
and BC = 5cm, EF = 6cm
Area of ∆DEF = 72 cm2
We know that areas of two similar triangles are in the ratios of the squares of the corresponding sides.
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 5

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 7.
A ladder 13m long reaches a window of building 12cm above the ground. Determine the distance of the foot of the ladder from the building.
Solution:
In ∆ ABC, B = ∠90°
⇒ AC2 = AB2 + BC2 (By Pythagoras theorem)
Let AC = 13m, AB = 12m, BC = ?
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 6
⇒ 132 = 122 + BC2
⇒ 169 = 144 + BC2
⇒ BC2 = 169 – 144 = 25
⇒ BC = \(\sqrt{25}\) = 5m
Hence, the foot of the ladder from the building is at a distance of 5m.

Question 8.
The hypotenuse of a right angled triangle is 3 m more than twice of the shortest side. If the third side is 1 m less than the hypotenuse find the sides of the triangle.
Solution:
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 7
Let the shortest side = x m = BC
Then hypotenuse = 2x + 3 m = AC
The third side = (2x + 3) – 1
= (2x + 2) m = AB
By phythagoras theorem, we have
AC2 = AB2 + BC2
⇒ (2x + 3)2 = (2x + 2)2 + x2
⇒ 4x2 + 9 + 12x = 4x2 + 4 + 8x + x2
⇒ x2 + 8x – 12x + 4 – 9 = 0
⇒ x2 – 4x – 5 = 0
⇒ x2 – 5x + x – 5 = 0
⇒ x (x – 5) + 1 (x – 5) = 0
⇒ (x – 5) (x + 1) = 0
⇒ x – 5 = 0 or x + 1 = 0
⇒ x = 5 or x = -1
But x can’t be negative x = 5
Hence, the sides of the triangle are
x, 2x + 3, 2x + 2
⇒ x = 5, 2 × 5 + 3, 2 × 5 + 2
= 5, 10 + 3, 10 + 2
i.e. 5, 13, 12

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 9.
A ladder 25 m long reaches a window which is 15 m above the ground an one side of the road. Keeping its foot at the same point, the ladder is turned to other side of the road to reach a window 20 m high. Find the width of the road.
Solution:
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 8
Let A and D be the windows on the either sides of the road
From phythagoras theorem,
AC2 = AB2 + BC2
⇒ 252 = 152 + BC2
⇒ BC2 = 252 – 152 = 625 – 225 = 400
BC = \(\sqrt{400}\) = 20m ……………. (1)
Also CD2 = CE2 + DE2
252 = CE2 + 202
CE2 = 252 – 202 = 625 – 400 = 225
CE = \(\sqrt{225}\) = 15m
Width of the road = BE = BC + CE
= 20 + 15
= 35 m

Question 10.
In the given figure below, If AD ⊥ BC, prove that AB2 – BD2 = AC2 – CD2.
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 9
Solution:
Given in ∆ ABC, AD ⊥ BC
R.T.P : AB2 – BD2 = AC2 – CD2
Proof : ∆ ABD is a right angled triangle.
We have AB2 = AD2 + BD2 (By pythagaros theorem)
⇒ AB2 – BD2 = AD2 ……………… (1)
∆ ACD is a right angled triangle.
We have AC2 = AD2 + CD2
⇒ AC2 – CD2 = AD2 ………………. (2)
From (1) and (2), we have
AB2 – BD2 = AC2 – CD2

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 11.
In an equilateral triangle ABC, if AD is the altitude prove that 3AB2 = 4 AD2.
Solution:
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 10
Given ABC is an equilateral triangle.
Here, AD ⊥ BC and AB = BC = CA
In triangles ADB and ADC
∠ADB = ∠ADC = 90°
Hypotenuse AB = Hypotenuse AC
AD is common
∴ ∆ ADB ≅ ∆ ADC
∴ BD = DC
In ∆ ADB, ∠ADB = 90°(By Phythagoras theorem)
AB2 = AD2 + BD2
= AD2 + \(\left(\frac{\mathrm{BC}}{2}\right)^2\) (∵ BD = CD)
= AD2 + \(\frac{\mathrm{BC}^2}{4}\)
AB2 = \(\frac{4 A D^2+B C^2}{4}\)
⇒ 4AB2 = 4AD2 + BC2
⇒ 4AB2 – BC2 = 4AD2
⇒ 4AB2 – AB2 = 4AD2 (∵ BC = AB)
∴ 3AB2 = 4AD2

Question 12.
A wire attached to a vertical pole of height 15 m is 25 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut ?
Solution:
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 11
Let AB = Vertical pole
AC = Wire
B = Base
C = Stake
By Pythagoras theorem
AC2 = AB2 + BC2
252 = 152 + BC2
BC2 = 252 – 152
BC2 = 622 – 225 = 400
BC = \(\sqrt{400}\) = 20 m
∴ The stake should be driven 20 m for the base of the pole so that the wire will be taut.

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 13.
The larger of two complimentary angles is double the smaller. Find the angles.
Solution:
Let first complementary angle = x
Second complementary angle = 2x
Sum of the two complementary angles = 90°
∴ x + 2x = 90
3x = 90
x = \(\frac{90}{3}\)
x = 30
First angle = 30°, second angle = 60°.

Question 14.
In ∆ ABC, DE || BC and \(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{3}{5}\). If AE = 2.1 cm, then find AC.
Solution:
Here, Given DE || BC and \(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{3}{5}\)
AE = 2.1
∴ \(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{\mathrm{AE}}{\mathrm{CE}}\)
\(\frac{3}{5}\) = \(\frac{2.1}{\mathrm{CE}}\)
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 12
CE = \(\frac{5 \times 2.1}{3}\)
CE = \(\frac{10.5}{3}\) = 3.5
CE = 3.5
Then AC = AE + CE
AC = 2.1 + 3.5
AC = 5.6

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 15.
What can you say about the ratio of areas of two similar triangles ?
Solution:
The ratio of areas of two similar triangles is( equal to the ratio of the squares of their corresponding sides.
Here
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 13

Question 16.
Construct an isosceles triangle whose base is 8 cm and altitude is 4 cm. Then, draw another similar triangle whose side are 1 \(\frac{1}{2}\) times the corresponding sides of the isosceles triangle.
Solution:
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 14

  1. Draw a lines segment BC = 8 cm
  2. Draw the perpendicular bisector PQ of BC intersecting BC at ‘O’
  3. Mark a point ‘A’ on PQ such that \(\overline{\mathrm{OA}}\) = 4 cm
  4. Join AB and AC to the isosceles triangle ABC
  5. Extend BC on either side O’C’ = 1 \(\frac{1}{2}\) times; BC = 12 times.
  6. Similarly extend OA So that OA’ = 1 \(\frac{1}{2}\) times A = \(\frac{12}{2}\) = 6
  7. Join A’ B’ and A’ C’
  8. Now A’ B’ C’ – The required triangle

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 17.
Give two different examples of pair of 3 similar figures and non similar figures.
Solution:
Similar figures :

  1. Any two circles
  2. Any two squares

Non-similar figures :

  1. A square and a rhombus
  2. A square and a rectangle

Question 18.
∆ ABC ~ ∆ DEF and their areas are respectively 64 cm2 and 121 cm2. If EF = 15.4 cm then find BC.
Solution:
Given area of ∆ABC = 64 cm2
area of ∆DEF = 121 cm2
EF = 15.4 cm, BC = ?
We know that \(\frac{\text { area of } \triangle \mathrm{ABC}}{\text { area of } \triangle \mathrm{DEF}}\)=\(\frac{\mathrm{BC}^2}{\mathrm{EF}^2}\)
⇒ \(\frac{64}{121}\) = \(\frac{\mathrm{BC}^2}{(15.4)^2}\)
⇒ BC2 = \(\frac{64}{121}\) × (15.4)2
= \(\frac{64}{121}\) × 15.4 × 15.4
BC2 = 125.44
∴ BC = \(\sqrt{125.44}\) = 11.2 cm.

Question 19.
In D ABC, DE || BC and \(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{3}{5}\) ; AC = 5.6 find AE.
Solution:
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 15
But \(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{3}{5}\) , So \(\frac{\mathrm{AE}}{\mathrm{EC}}\) = \(\frac{3}{5}\)
given AC = 5.6
from (1) \(\frac{3}{5}\) = \(\frac{\mathrm{AE}}{\mathrm{AC – AE}}\)
\(\frac{3}{5}\) = \(\frac{\mathrm{AE}}{5.6-\mathrm{AE}}\) (By cross-multiplication)
5 AE = 3 (5.6 – AE)
5 AE = 3 × 5.6 – 3AE
5AE + 3 AE = 3 × 5.6
8AE = 16.8
AE = \(\frac{16.8}{8}\) = 2.1 cm

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 20.
State and prove basic proportionality theorem.
Solution:
Preposition : If a line is drawn parallel to one side of the triangle to intersect the other sides in distinct points, then the other two sides are divided in the same ratio.

Given : A triangle ABC in which DE || BC and DE intersects AB in D and AC in E.
To Prove : \(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{\mathrm{AE}}{\mathrm{EC}}\)
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 16
Construction : Join BE, CD and draw EF ⊥ AB. DG ⊥ AC.
Proof: In ∆ EAD and ∆ EDB, Here as EF ⊥ AB
therefore EF is the height for both of triangles EAD and EDB.
Now, Area of ∆ EAD = \(\frac{1}{2}\) (base × height)
= \(\frac{1}{2}\) × AD × EF
Area of EDB = \(\frac{1}{2}\) (base × height)
= \(\frac{1}{2}\) × DB × EF
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 17
∴ ∆ DBF, ECD are on the same base DE and between the same parallels DE || BC,
We have area of ∆DBE = area of ∆ECD
Hence (1) = (2)
i.e, \(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{\mathrm{AE}}{\mathrm{EC}}\) (Q.E.D)

TS 10th Class Maths Important Questions Chapter 8 Similar Triangles

Question 21.
Construct a triangle of sides 4 cm, 5 cm and 6 cm then construct a triangle. Similar to it. Whose sides are \(\frac{2}{3}\) of the corresponding sides of the first triangle.
Solution:
TS 10th Class Maths Important Questions Chapter 8 Similar Triangles 18
Steps of construction :

  1. Draw ∆ ABC with AB = 4 cm, BC = 5 cm and CA = 6 cm.
  2. Draw a Ray \(\overrightarrow{\mathrm{BX}}\) making an acute angle with BC on the side opposite to vertex A.
  3. Mark three points B1, B2 and B3 on \(\overrightarrow{\mathrm{BX}}\) Such that BB1 = B1B2 = B2B3.
  4. Join B3, C.
  5. Draw a line parallel B3, C through B2 meeting BA at A’.
  6. ∆ A’ BC’ is required triangle.

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose

Telangana TSBIE TS Inter 1st Year English Study Material 2nd Lesson A Red Red Rose Textbook Questions and Answers.

TS Inter 1st Year English Study Material 2nd Lesson A Red Red Rose

Annotations (Section – A, Q.No. 2, Marks : 4)

Question 1.
O my Luve’s like a red, red rose.
That’s newly sprung in June.
Answer:
Introduction:
This couplet is taken from the poem, A Red Red Rose written by Robert Burns. It is one of the best lyrics of English poetry. It blends the eternity of love with the mortality of life.

Context & Explanation:
The poet begins by using a simile to compare his love to a rose. In other words, his love is like a flower that has just bloomed in June. His love is fresh and is bursting with life. His feelings are very profound.

Critical Comment:
It is an address to the speaker’s lover to whom he swears eternal love and loyalty.

కవి పరిచయం :
రాబర్ట్ బర్న్స్ అంత్యానుప్రాసయుక్తముగా వ్రాసిన ‘ఒక ఎర్ర ఎర్ర గులాబి’ పద్యం నుండి ఈ పంక్తులు తీసుకోబడినవి. ఇతను 18వ శతాబ్దపు స్కాటిష్ కవి. ఈ పద్యంలో ఒక యువకుడి భావోద్వేగ తీవ్రత వర్ణింపబడినది.

సందర్భం :
ఇది పద్యము యొక్క ప్రారంభ ద్విపద. ఒక యువప్రేమికుడు తన ప్రియురాలికి తన హృదయాన్ని వివరిస్తున్నాడు. అతను తన ప్రేమ ఎర్ర గులాబి అంత అందంగాను మరియు కోమలంగాను ఉందని ప్రకటించుకుంటున్నాడు. తన ప్రేమ జూన్లో వికసించిన గులాబీ అంత తాజాగా ఉందని. గులాబి పువ్వు విశ్వవ్యాప్తంగా ఆమోదించబడిన ప్రేమ చిహ్నము. గులాబి యొక్క సౌకుమార్యము మరియు సౌందర్యము ప్రేమ లక్షణాలను ప్రముఖంగా ప్రతిబింబిస్తాయి. ఉపమానములు కవిత యొక్క కళాసంపదను పెంచుతాయి. వివరణ : ఇక్కడ ఒక యువ ప్రేమికుడు తన ప్రియురాలికి తన హృదయాన్ని వివరిస్తున్నాడు.

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose

Question 2.
O my Luve’s like the melodie
That’s sweetly pla’d in tune.
Answer:
Introduction:
This couplet is taken from the beautiful lyric A Red Red Rose, written by Robert Burns. It is one of the best lyrics of English poetry. It blends the eternity of love with the mortality of life.

Context & Explanation:
The poet compares his love to a melody that is sweetly played in tune. His love is a song that is sung just so right in fact that it’s kind of sweet. His feelings are very profound.

Critical Comment:
Here, the poet compares his beloved to a sweet melody which is nice to hear.

కవి పరిచయం :
రాబర్ట్ బర్న్స్ అంత్యానుప్రాసయుక్తముగా వ్రాసిన ‘ఒక ఎర్ర ఎర్ర గులాబి’ పద్యం నుండి ఈ పంక్తులు తీసుకోబడినవి. ఇతను 18వ శతాబ్దపు స్కాటిష్ కవి. ఈ పద్యంలో ఒక యువకుడి భావోద్వేగ తీవ్రత వర్ణింపబడినది.

సందర్భం :
‘ఒక ఎర్ర ఎర్ర గులాబి’ ఒక మధుర ప్రేమ గేయము. లోతైన ప్రేమలో పడ్డ ఒక యువకుడు తన ప్రియురాలికి తన హృదయాన్ని చిత్రించుతున్నాడు. ఆమె పట్ల తన ప్రేమ ఎంత గాఢమైనదో తెలపాలని కోరుకుంటున్నాడు. ఆ బలమైన కోరిక అతనిని ఉపమానముల వాడుక వైపు నడిపిస్తుంది. తన ప్రేమ ఎర్ర గులాబి లాంటిది అంటాడు అతను. ఆయన ఇంకా అదనంగా (ఇక్కడ) తన ప్రేమ తీయగా పాడబడిన మధుర గీతిక అంటున్నారు. ప్రేమకు, గులాబీలకు మరియు సంగీతానికి మధ్య బంధం బలమైనది. అది ఇక్కడ మరింత బలోపేతం చేయబడింది.

వివరణ :
ఇక్కడ కవి తన ప్రేమ తియ్యగా పాడబడిన మధురగీతికగా పోలుస్తున్నాడు.

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose

Question 3.
And I will Luve thee still, my dear,
Till a’ the seas gang dry :
Answer:
Introduction:
This couplet is extracted from the beautiful lyric A Red Red Rose, written by Robert Burns. It is one of the best lyrics of English poetry. It blends the eternity of love with the mortality of life.

Context & Explanation :
The speaker says he will love his bonny lass until all the seas dry up. The word ‘a’ is the shortened form of all. It is very common in Scots English. Gang does not refer to a group of people. It is an old word that means ‘go or a walk. The seas will probably never gang dry. So, the speaker seems to be saying that he will love his lass forever.

Critical Comment:
Here, the poet makes several promises to love his beloved forever.

కవి పరిచయం :
రాబర్ట్ బర్న్స్ అంత్యానుప్రాసయుక్తముగా వ్రాసిన ‘ఒక ఎర్ర ఎర్ర గులాబి’ పద్యం నుండి ఈ పంక్తులు తీసుకోబడినవి. ఇతను 18వ శతాబ్దపు స్కాటిష్ కవి. ఈ పద్యంలో ఒక యువకుడి భావోద్వేగ తీవ్రత వర్ణింపబడినది.

సందర్భం :
“ప్రేమ విచిత్రము” అన్నారు విజ్ఞులు. ప్రేమకు తర్కం తెలియదు. ఇక్కడ యువ ప్రేమికుడికి ఒకే ఒక లక్ష్యము ఉంది. తన ప్రియురాలికి తను ఆమెను ఎంత గాఢంగా ప్రేమిస్తున్నాడో నొక్కి చెప్పాలని అతను కోరుకుంటున్నాడు. ఆ విషయాన్ని నిరూపించటానికి అతను ఉపమానాలు మరియు అతిశయోక్తులు వాడుతున్నాడు. ఇచ్చిన ద్విపదలో ఆయన అంటున్నారు ఇలా : సముద్రాలన్నీ ఎండిపోయినా కూడా, నా ప్రేమ కొనసాగుతూనే ఉంది. సముద్రాలన్నీ నిజంగా ఎప్పటికైనా పూర్తిగా ఆవిరి అవుతాయా ? ఆ విషయం పట్ల అతనికి బాధ అసలు లేదు. అతని ఏకైక పని తన మనసును ఆమెకు చూపటం.

వివరణ :
ఇక్కడ కవి తన ప్రియురాలికి తన రకరకాల వాగ్దానాలను ప్రకటిస్తున్నాడు.

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose

Question 4.
And fare thee weel, my only
Luve and fare thee weel a while!
Answer:
Introduction:
This couplet is taken from the beautiful lyric, ‘A Red Red Rose’ written by Robert Burns. It is one of the best lyrics of English poetry. It blends the eternity of love with the mortality of life.

Context & Explanation :
The speaker says that he will love his beloved forever. Even after the seas get dried up, all the rocks melt, and the sands of life exhaust their love stays alive. It will last forever. For the present, the speaker says good bye only to return soon, though the journey is to a far off place the poem blends the eternity of love with the mortality of life.

Critical Comment:
The poet makes several promises to love his beloved forever.

కవి పరిచయం :
రాబర్ట్ బర్న్ అంత్యానుప్రాసయుక్తముగా వ్రాసిన ‘ఒక ఎర్ర ఎర్ర గులాబి’ పద్యం నుండి ఈ పంక్తులు తీసుకోబడినవి. ఇతను 18వ శతాబ్దపు స్కాటిష్ కవి. ఈ పద్యంలో ఒక యువకుడి భావోద్వేగ తీవ్రత వర్ణింపబడినది.

సందర్భం :
మనసు మార్గాలు విచిత్రము. మరీ ప్రేమికుడి మనసు మార్గాలు మరింత విచిత్రము. ప్రేమలో పడ్డ యువకుడు తన ప్రియురాలి పట్ల తన ప్రేమ ఎంత లోతైనదో పదే, పదే నొక్కి చెబుతాడు. పద్యం యొక్క మొదటి మూడు స్టాంజాల నిండా అతని ప్రేమకు మద్దతుగా అతిశయోక్తులు మరియు ఉపమానాలే. సముద్రాలు ఎండిపోయినా, పర్వతాలు కరిగిపోయినా, జీవితాలు అనే ఇసుక అంతరించినా నా ప్రేమ కొనసాగుతూనే ఉంటుందని చెప్పాడు. ఇక ఇప్పుడు ఆ ప్రేమికుడు తన ప్రియురాలికి వీడ్కోలు పలుకుతున్నాడు, కొద్ది కాలానికి మాత్రమే అయినప్పటికి అతను ఒక వెయ్యి మైళ్ళ దూర ప్రయాణం చేపడుతున్నాడు. అతను ఆమెకు హామీ ఇస్తున్నాడు తను మళ్ళీ తప్పక ఆమె దగ్గరకు వస్తానని. “Fare thee well” అంటే “మీకు వీడ్కోలు” అని.

వివరణ :
ఇక్కడ కవి తన ప్రియురాలికి తన రకరకాల వాగ్దానాలను ప్రకటిస్తున్నాడు.

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose

Paragraph Questions & Answers (Section – A, Q.No. 4, Marks : 4)

Question 1.
How is the feeling of love expressed in the poem A Red Red Rose ?
Answer:
The poem A Red Red Rose is written by Robert Burns. It is one of the best lyrics of English poetry. It blends the eternity of love with the mortality of life. It is an address to the speaker’s lover to whom he swears eternal love and loyalty.

The speaker shares his romantic love for his beloved in this poem. His feelings are very profound. He compares his beloved with a fresh and beautiful rose sprung in June and to a sweet melody as well. He also makes several promises to live his beloved forever. He makes a promise that he will return to her life after their temporary separation. He promises to be with her, no matter how long the journey takes.
A Rose speaks of Love silently

రాబర్ట్ బర్న్స్ అనే స్కాటిష్ కవి. ‘ఒక ఎర్ర ఎర్ర గులాబి’ అనే పద్యాన్ని రచించాడు. ఆంగ్ల పద్యసాహిత్యంలో ఇది ఒక ఉత్తమమైన పద్యం. ఇందులో కథకుడు ప్రియురాలితో తన ప్రేమను వ్యక్తం చేస్తున్నాడు.

ప్రియుడు తన ప్రేమను ప్రియురాలికి తెలుపుతున్నాడు. అతని అనుభూతులు పంచుకుంటున్నాడు. అతను తన ప్రేమను జూన్లో వికసించే ఒక తాజా ఎర్రని గులాబితో పోలుస్తున్నాడు. అతను తన ప్రేయసికి రకరకాల వాగ్దానాలు చేస్తున్నాడు. వారి ఎడబాటు తాత్కాలికమేనని మళ్ళీ తప్పక ఆమె దగ్గరకు వస్తానని వాగ్దానం చేస్తున్నాడు. ప్రస్తుతం వీడ్కోలు పలుకుతున్నానని తెలిపాడు.

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose

Question 2.
Why is love compared to a Red Red Rose ?
Answer:
The poem, ‘A Red Red Rose’ is written by Robert Burns. He is one of the leading voices of Scotland in English literature. The present poem pictures his love for his beloved. His love is as beautiful as a fresh rose that has just bloomed in June. It is fresh and bursting with life. Here love is compared to a red rose because red rose has been an ancient symbol of love in almost all cultures. In this case, rose is newly spring in June. So, we can understand that his love is always at the starting point. Robert uses his rose with the meaning that it is very strong and passionate. It shows how strong is the speaker’s feeling.

రాబర్ట్ బర్న్స్ అనే స్కాటిష్ కవి. ‘ఒక ఎర్ర ఎర్ర గులాబి’ అనే పద్యాన్ని రచించాడు. ఆంగ్ల పద్యసాహిత్యంలో ఇది ఒక ఉత్తమమైన పద్యం. ఇందులో ప్రియుడు ప్రియురాలితో తన ప్రేమను వ్యక్తం చేస్తున్నాడు.

ప్రియుడు తన ప్రేమను ప్రియురాలికి తెలుపుతున్నాడు. అతని అనుభూతులు పంచుకుంటున్నాడు. అతను తన ప్రేమను జూన్లో వికసించే ఒక తాజా ఎర్రని గులాబితో పోలుస్తున్నాడు. ఇక్కడ తన ప్రేమను ఒక ఎర్ర ఎర్ర గులాబితో పోలుస్తూ అన్ని సంస్కృతులలో పురాతన కాలం నుంచి ఎర్రగులాబి అనేది ప్రేమకు చిహ్నంగా పేర్కొన్నాడు. ఇక్కడ గులాబి జూన్లో నూతనముగా వికసించినది. రాబర్ట్ గులాబిని బలమైన ప్రేమకు తార్కాణంగా చెప్పాడు. కథకుని భావాలు తన ప్రేమ పట్ల ఎంత బలంగా ఉన్నాయో ఈ పద్యంలో తెలుస్తున్నాయి.

Question 3.
What does the speaker promise in A Red Red Rose ? * (Imp, Model Paper)
Answer:
The poem, A Red Red Rose, is written by Robert Burns. It is one of the best lyrics of English poetry. The speaker shares his romantic lone for his beloved. He promises different things to his beloned. He vones to love his beloved until the seas have dried up, the fire of the sun has melted the ice, and human life is over. He uses these examples to express his feelings. Thus, promises his eternal love to his borny lass and that no matter how far he might go, he will always return to her aside.
TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose 2
రాబర్ట్ బర్న్స్న గొప్ప ప్రేమ కవిగా పరిగణిస్తారు. అత్యంత విస్తృతంగా ఆమోదించబడిన ప్రేమ చిహ్నం గులాబి. బర్న్స్ యొక్క కవిత ‘ఒక ఎర్ర ఎర్ర గులాబి’ పేరు నుండి చివరి పంక్తి వరకు అదొక ప్రేమ పద్యము అని నిరూపించుకుంటుంది. ఒక యువ ప్రేమికుడు ఈ కవితలో కథకుడు. అతను పదే పదే నొక్కి చెబుతాడు తన ప్రేమ ఒక ఎర్ర గులాబి లాంటిది మరియు ఒక మధుర గేయం లాంటిది అని.

అతను ఇంకా ఇంకా తన ప్రేమ కొనసాగుతుందని, సముద్రాలు ఎండిపోయినా, పర్వతాలు కరిగిపోయినా, జీవితం అనే ఇసుక అంతరించిపోయినా కూడా. ఆమెను చాలా గాఢంగా, లోతుగా ప్రేమిస్తున్నానని నొక్కి చెబుతాడు. గులాబీలు, సంగీతం ప్రేమకు ప్రతినిధులుగా చక్కగా ఉంటాయి. అందుకే ఇక్కడ ప్రేమికుడు తన ప్రేమ ఎర్ర గులాబి లాంటిది అంటాడు. కవిత పేరు కూడా ఈ విషయాన్ని నొక్కి చెబుతుంది.

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose

Question 4.
Describe the speaker’s devotion to his beloved as expressed in the last two lines of A Red Red Rose.
Answer:
Robert Burns poem A Red Red Rose pictures a young speaker’s love for his beloved. The poem blends the eternity of love with the mortality of life. Especially, in the last two lines, the speaker is completely devoted to his beloved. The has promised his sweet heart that he will return to her wherever he goes, no matter what the distance. Even if her relationship is ten thousand miles away, his love will never die. He will continue to love her. All in all these lines represent the immortality of his love for his beloved.

రాబర్ట్ బర్న్స్ అనే స్కాటిష్ కవి. ‘ఒక ఎర్ర ఎర్ర గులాబి’ అనే పద్యాన్ని రచించాడు. ఆంగ్ల పద్యసాహిత్యంలో ఇది ఒక ఉత్తమమైన పద్యం. ఇందులో కథకుడు ప్రియురాలితో తన ప్రేమను వ్యక్తం చేస్తున్నాడు. చివరిగా ఆ ప్రేమికుడు తన ప్రియురాలికి వీడ్కోలు పలుకుతున్నాడు, కొద్దికాలానికి మాత్రమే అయినప్పటికి. అతను ఒక వెయ్యి మైళ్ళ దూర ప్రయాణం చేపడుతున్నాడు. అతను ఆమెకు హామీ ఇస్తున్నాడు తను మళ్ళీ తప్పక ఆమె దగ్గరకు వస్తానని. “Fare thee well” అంటే “మీకు వీడ్కోలు” అని.

A Red Red Rose Summary in English

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose 1

Robert Burns is a great lyrical poet. He became truly the national poet of Scotland. The last years of his life were fruitful in the lyrical songs that gave him not merely a national but a universal reputation. In the present poem “A Red Red Rose” he describes his love for his beloved. This is a simple, but sincere poem in which he pours out his intense love for his beloved. He describes his pious and ardent love in a heart-rending and picturesque manner.

The poet points out that love is newly emerging feeling fully bloomed like a pretty rose in lovely spring. It is filled with the warmth of June, the summer. He says that his love is fully grown, bloomed like a lovely rose, sprung in June. It is like a sweet melody played in a passionate tune.

He endows his emotion with a concrete form he sees vividly in his beloved’s image. He declares the immortality of his love. He says that his love will remain till the seas get dried, till the rocks melt with the sun, and till death snatches him away from his sweetheart.

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose

Finally, he overcomes all his grief. It is because he realizes and convinces the beloved that this parting is not an end. And they will be united again after crossing the path of death covering a distance of ten thousand miles. Thus the ravages of time will fail to bring any change upon his pious feelings. He bids his beloved farewell physically. He bids it only temporarily as he is sure to get united with her immortally in the other world beyond the limits of life and death-the physical concepts. Burns very convincingly assures, his beloved that he will reach her through the distance between them were ten thousand miles, symbolically.

A Red Red Rose Summary in Telugu

Lyric అనగా గేయము అని అర్థం. దీనిని లయబద్ధముగా పాడవచ్చును. ఆంగ్ల భాషలో Robert Burns ఖ్యాతి గాంచిన గేయ రచయిత. ఇతను Scotland జాతీయ కవిగా కూడా గుర్తింపు పొందాడు. అతని చివరి కాలంలోని గేయరచనలు జాతీయ స్థాయిలోనే కాక ప్రపంచ స్థాయిలో కూడా పేరు తెచ్చాయి. ప్రస్తుత పద్యంలో కవి తన ప్రేయసి పట్లున్న తన ప్రేమను వివరిస్తున్నాడు. తన ప్రేయసిని గులాబీతో పోల్చి పద్య రచన చేశాడు.

తన ప్రేయసిని వసంత ఋతువులో అప్పుడే వికసించిన గులాబీతో పోల్చాడు. ఆ గులాబీ పరిమళాలు వెదజల్లుతూ ఆకర్షణీయంగా, సుందరంగా, కోమలంగా, లలితముగా ఎలా ఉందో తన ప్రేయసి కూడా అలాగే ఉందని వర్ణించినాడు. తన ప్రేమకు చావులేదని, సూర్యుడు, చంద్రుడు, భూమి, ఆకాశము, సముద్రములు ఉన్నంతకాలము వారి ప్రేమ కూడా చిరకాలమని వివరంగా వర్ణిస్తాడు.

తన ప్రేయసితో విడిపోయినప్పటికీ అది కేవలం తాత్కాలికమని, స్వర్గలోకములో ఆమెను కలుసుకుంటానని లేకుంటే మరియొక జన్మలోనైనా ఆమెను కలుస్తానని అతని ఆశ. మనస్సులు ఒకటైనవేళ, శరీరములు వేరైనప్పటికీ ప్రేమ శాశ్వతమైనదని అభివర్ణిస్తాడు.

A Red Red Rose Summary in Hindi

स्कॉट लैड – कवि रॉबर्ट बर्न्स से 18 वीं शती में लिखित प्रेम गीत है यह ‘एक लाल लाल गुलाब’ – ‘A Red Red Rose’ यह क्षाव्य गीत है, जिसमें झलकता है कि यौवन में प्रेम कितना भावोद्वेग भरित होता है । लयबद्ध रुप से बढ़नेवाली यह कविता पाठकों से अपार प्रेम पाती है । कथक अपनी प्रिया को अपना प्यार सोलह पंक्तियों में बताता है ।

TS Inter 1st Year English Study Material Chapter 2 A Red Red Rose

“मेरा प्रेम जून में विकसित ताजा लाल गुलब जैसा है । जितना तेरा सौंदर्थ और आनंद है, तेरे प्रति मेरा प्रेम उतना गहरा है । तेरे प्रति मेरा प्रेम शाखत है । समुद्र सूख जाने पर भी, पर्वत गल जाने पर भी जीवन की रेत मिट जाने पर भी मेरा पेर प्रेम तो जारी रहता है। फिर भी, कुछ समय के तुझे विदा करता हूँ जरुर वापस आता हूँ। मेरी यात्रा दस हज़ार मील की होने पर भी लौट है । आता तब तक विदाई ।

Meanings and Explanations

Melody (n) / mel / adi/ (మెలడీ) : sweet sounds, మధురగీతం , मधुर गीत
Bonny (adj) / bani / (బోని) : healthy looking, with glow of health, ఆరోగ్యాంగా అందంగా ఉన్న , कमनीय, रमणीय
Lass (n)/aæs/(ల్యాస్) : girl, యువతి , युवती, किशोरी
Art : are, ఉన్నారు, है, हैं, हो
Thou (pron)/ ðau / (దౌ) : you, నీవు, మీరు,, आप, तुम
Gang dry : get dried, ఎండిపోవుట , अदुश्य होना
Fare thee well : Good-bye, may god bless you, వీడ్కోలు , तुझे विदा
Sprung(v-pp) / spraŋ / స్స్పంగ్) : bloomed, వికసించిన, పూసెను,, खिला हुआ
Weel : well, ఆరోగ్యవంతమైన , स्वस्थ
Luve (n)/lav / (లవ్) : love, ప్రేమ, प्यार, प्रेम, मुहबत
Play’d : played, ఆడటం, खेलना

TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table

Telangana SCERT TS 10th Class Physical Science Study Material Pdf 7th Lesson Classification of Elements- The Periodic Table Textbook Questions and Answers.

TS 10th Class Physical Science 7th Lesson Questions and Answers Classification of Elements- The Periodic Table

Improve Your Learning
I. Reflections on concepts

Question 1.
What are the limitations of Mendeleeff’s periodic table? How could the modern periodic table overcome the limitations of Mendeleeff’s table?
Answer:
Limitations of Mendeleeff’s periodic table: –

  1. Position of hydrogen: The position of hydrogen in table is not certain because it can be placed in group IA as well as in group VII A as it resembles both with alkali metals of IA group and halogens of VITA group.
  2. Anomalous pair of elements: Certain elements of higher atomic mass precede those with lower atomic mass. Eg: Tellurium proceeds Iodine, potassium placed after Argon. (Atomic mass 40) .
  3. DissimIlar elements placed together: Elements with dissimilar properties were placed in same groups as sub-group A and sub-group B.
    Eg: U, Na, and K of the IA group have little resemblance with Cu, Ag, Au of IB group.
  4. Some similar elements are separated: Some similar elements like copper and mercury ‘silicon and thallium’ etc., are placed ¡n different groups of the periodic table.

Question 2.
Define the modern periodic law. Discuss the construction of the long form of the periodic table.
Answer:
Modern Periodic Law: The physical and chemical properties of elements are the periodic function of the electronic configurations of their atoms.

  1. The modern periodic table has eighteen vertical columns known as groups and seven horizontal rows known as periods.
  2. The horizontal rows of elements In a periodic table are called periods. The elements in a period have consecutive atomic numbers. The vertical columns of elements In the table are called groups.
  3. Based on which subshell the differentiating electron enters In the atom of the given element the elements are classified as s, p. d, and f block elements.

s-Block elements :- The elements with valence shell configuration ns1 and ns2 are s- Block elements.
p-Block elements: The elements with electronic configuration from ns2np1 to ns2 np6 are p-block elements.
s and s block elements together are known as representative elements. d-Block elements or Transition elements:
The elements with valency electronic configuration ns2np6 nd1 to ns2np6 (n-1) d10 are called d-Block elements. These move from left to right in periodic table and we observe a transition of elements from metals to non-metals. Hence these are called transition elements.

f-Block elements or Inner transition elements: The elements In which f-orbitals are being filled in their atoms are called f-Block elements. These elements are called inner transition elements.

Inert Gases: Helium, Neon, Argon, Krypton, Xenon, Radon do not involve In any reaction and they are called Inert gases or noble gases. These are placed In zero group and every period ends with noble gas.

The long periodic table Is divided into 7 periods and 18 groups. First period contains 2 elements second period contains 8 elements. Third period contains 8 elements 4th and 5th periods contain 18 elements each and sixth period contains 32 elements. Seventh period is incomplete.

The 4f elements are called Lanthanolds. Elements from 58Ce to 71Lu. The 5f elements are called Actinoids from 90Th58 to 103 Lr 71 These are shown separately at the bottom of the periodic table.

TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table

Question 3.
Explain how the elements are classIfied Into s, p, d, and f-block elements In the periodic table and give the advantage of this kind of classification.
Answer:
Depending on the valency shell electronic configuration elements are classified into s, p, d, and f block elements.
s-Block elements: The elements with valence shell electronic configuration ns1 and ns2 are called s-block elements.

p-Block elements: The elements with valence shell electronic configuration ns2 np6 are called p-block elements. s and p block elements together known as Representative elements.

d-Biock elements : The elements with valence electronic configuration from ns2np6 (n -1)d1 to ns2np6(n -1)d10 are called d-block elements. These are also called as Transition elements.

f-Block elements: The elements In which f-orbitaIs are being filled in their atoms are called f – block elements. These are also known as Inner Transition Elements.

Advantage: This division of elements into blocks Is useful to divide the elements into groups. Every group has the elements with same valence electronic configuration. So they have similar chemical properties.
s-block elements – I A and II A groups
p-block elements – III A to VITI A or zero group.
d-block elements – I B to VIII B groups
f-block elements – Lanthanoids and Actinoids.

Question 4.
Write down the characteristics of the element having atomic number 17.
Electronic configuration …………………….
Period number …………………….
Group number …………………….
Element family …………………….
No. of valence electrons …………………….
Valency …………………….
Metal or Non-metal …………………….
Answer:
Electronic configuration: 1s22s22p63s23p5
Period number : 3
Group number: 17
Element family: Halogen (VII A) or 17th group
No. of valency electrons : 2+5 = 7 ( seven )
Valency: 1
Metal or Non-metal : Non-metal

Question 5.
Complete the following table using the periodic table.
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 1
Answer:
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 2

Question 6.
Complete the following table using the periodic table.
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 3
Answer:
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 4

Question 7.
Newlands proposed the law of octaves. Mendeleeff suggested eight groups for elements in his table. How do you explain these observations in terms of modern periodic classification?
Answer:

  • Newlands proposed the law of octaves.
  • According to Newlands law of octaves, every eight element starting from a given one be a repetition of the first with regard to its properties.
  • Mendeleeff suggested eight groups for elements in his table.
  • The elements in the same group have same properties that means every eight element starting from a given element have same property with that.
  • In terms of modern concepts, after completion of one shell the properties of elements are repeated.
  • After completion of ns2 np6 configuration the properties of elements are repeated.
  • So Newlands law of octaves and Mendeleeff’s suggestion of eight groups for elements are also reliable according to modem concepts.

Question 8.
Why was the basis of classification of elements changed from the atomic mass to the atomic number?
Answer:

  1. The first attempt to classify elements was made by Dobereiner.
  2. Dobereiner’s attempt gave a clue that atomic masses could be correlated with properties of elements.
  3. Newlands’ law of octaves also followed the same basis for classification but this law Is not valid for the elements that had atomic masses higher than calcium.
  4. Mendeleeff’s classification also was based on the atomic masses of elements, but it lead to some limitations like Anomalous pair of elements and Dissimilar elements placed together.
  5. Mosley by analyzing the X-ray patterns of different elements was able to calculate the number of positive charges in the atoms of respective elements.
  6. With this analysis, Mosley realized that the atomic number is more fundamental characteristic of an element than its atomic weight.
  7. So, he arranged the elements in the periodic table according to the increasing order of their atomic number.
  8. This arrangement eliminated the problem of anomalous senes and dissimilar elements placed together In same group as done by Mendeleeff’s classification.

TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table

Question 9.
(a) What is a periodic property? How do the following properties change In a group and period? Explain.
(a) Atomic radius
(b) Ionization energy
(c) Electron affinity
(d) Electronegativity.
Answer:
Periodic property: Periodicity means that when elements are arranged according to their electronic configuration, the periodic properties of elements in the periodic table reoccur at regular intervals – such properties which reoccur are called as periodic properties.

Change of properties In a group and a period.

Type of Periodic PropertyTrends in
Groups (from top to bottom)Periods (from left to right)
Atomic radiusIncreasingDecreasing
Ionization energyDecreasingIncreasing
ElectronegativityDecreasingIncreasing
Electron AffinityDecreasingIncreasing

Explanation:
(a) Atomic radius: Atomic radius of an element Is not possible to measure in its isolated state, because it is not possible to determine the location of the electron that surrounds the nucleus. Hence the distance between nucleus and outermost orbit of an element is taken as atomic radius measured In Pm (Pico Meters).

Variation In group: In a group as we go down, the atomic number of the element Increases, as a new shell Is added. As a result, the distance between nucleus and the outer shell Increases. This Is the reason why the atomic radius increases as we go down in a group.

Variation In period: AtomIc radii of elements decrease across a period from left to right. As we go from left to right, electrons enter into the same main shell or even Inner shell. Therefore there should be no change In the distance between nucleus and outer shell, but nuclear charge Increases. Hence the nuclear attraction on the outer shell increases. As a result the size of the atom decreases.

(b) Ionization enegry: The energy required to remove an electron from the outermost orbit or shell of a neutral gaseous atom is called ionization energy.

Variation in group: As we go down in a group, atomic radius increases. Hence the ionization energy decreases from top to bottom.

Variation In period: As we go from left to right in a period, the atomic radius decreases. Hence the ionization energy increases from left to right In a period but does not follow gradient order as the electron is attracted more towards the nucleus.

(c) Electron affinity: The electron affinity of an element is defined as the energy liberated when an electron Is added to its neutral gaseous atom. Electron affinity of arm atom is also called electron gain enthalpy of that element.

Variation in group: Electron gain enthalpy values decrease as we go down In a group, due to Increase In atomic radius.

Variation In period: Electron gain enthalpy values Increase as we go from left to right in a period, due to decrease in atomic radius.

(d) Electronegativity: The electronegativity of an element Is defined as the relative tendency of its atom to attract electrons towards itself when it is bounded to the atom of another element.

Variation in groups and periods: Electronegativity values of elements decrease as we go down in a group and increase along a period from left to right.

Question 10.
(b) Explain the ionization energy order In the following sets of elements.
(a) Na, Al, Cl
(b) Li, Be, B
(c) C, N, O
(d) F, Ne, Na
(e) Be, Mg, Ca.
Answer:
(a) Na, Al, Cl: All these three elements belong to same period. The order of their atomic size Is Na > Al> Cl. As we move from left to right in a period Ionization energy increases
∴ The order of ionization energy of these elements is Cl> Al> Na.

(b) Li, Be, B: U, Be, B belong to same period. The electronic configuration of Li-1S22S1, Be-1S22S2, B-1S22S22p1. The penetration power of 2P is less when compared to 2s. So it is easy to remove electrons from ‘2p’.
∴ The order of ionization energy of these elements is: Be > Li> B.

(c) C, N, O : C, N, O belong to same period. The electronic configuration of C – 1s22s22p2, N-1s22s22p3, O-1s22s22p4. Nitrogen has half filled degenerate orbital configuration. So, it Is more stable compared to Cl and ‘O’so Its Ionisation energy Is high.
∴ Order of ionization energy of these elements is: N > C> O.

(d) F, Ne, Na: Electronic configuration of F -1S22s22p5; Ne – 1S22S22p6; Na – 1s22s22p63s1. Ne is an Inert gas, so It has highest Ionization energy.
‘Na’ has smaller size compared to F. So ¡t ha high ionization energy.
∴ The order of ionization energy is: Ne>F>Na.

(e) Be, Mg, CaP: These elements belong to the same group the atomic size of these elements Is In the order of Ca > Mg > Be. As atomic size increases ionization energy decreases. The order of Ionization energy Is Be > Mg > Ca.

Application Of Concepts

Question 1.
Given below Is the electronic configuration of elements A, B, C, and D.
(A) 1s2 2s2 1. WhIch are the elements coming within the same period?
(B) 1s22s22p63s2 2. Which are the ones coming within the same group?
(C) 1s22s22p63s2 3p3 3. Which are the noble gas elements?
(D) 1s22s22p6 4. To which group and period does the clement C ‘belong?
Answer:
(1) A and D belong to same penned B and C belong to the same period.
(2) A, B coming in the same group.
(3) D is the noble gas.
(4) C’ belongs to 15th group and third period.

Question 2.
s – block, and p – block elements (except 18th group elements) are sometimes called as ‘Representative elements’ based on their abundant availability In the nature. Is It Justified? Why?
Answer:

  • s-block and p-block elements (except 18th group elements) are called ‘Representative elements’.
  • All these elements have incomplete outermost shells.
  • So they are chemically reactive to obtain stable electronic configuration of noble gases ns2np6.
  • So, they are abundant In nature n the form of compounds.

Question 3.
The electronic configuration of the elements X, Y, and Z are given below.
(A) X = 2 (B) Y = 2, 6 (C) Z =2, 8, 2
(i) Which element belongs to second period?
Answer:
‘Y’ belongs to the second period. Because differentiating electron enters into second shell.
(ii) Which element belongs to second group?
Answer:
Element ‘Z’ belongs to second group. Because its valence is ‘2’.
(iii) Which element belongs to 18 group?
Answer:
Element X belongs to 18th” group because its 1st shell is completely filled with electrons.

TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table

Question 4.
(a) State the number of valence electrons, the group number and the period number of each element given in the following table.
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 5
Answer:

ElementValence electronsGroup numberPeriod number
Sulphur616 (VIA)3
Oxygen616(VLA)2
Magnesium22 ( II A)3
Hydrogen1No group1
FluorIne717 ( VII A)2
Aluminium313 (III A)3

(b) State whether the following elements belong to a Group (G), Period (P) or Neither Group nor Period Indicating the letters G or P or N
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 6
Answer:

ElementsGroup / Period / Neither group nor period
Li, C, OP
Mg, Ca, BaG
Br, Cl, FG
C, S, BrN
Al, SI, ClP
Li, Na, KG
C, N, OP
K, Ca, BrN

 

Question 5.
Identify the element that has the larger atomic radius In each pair of the following and mark it with a symbol (✓).
(i) Mg, Ca
(ii) Li, Cs
(iii) N, P
(iv) B, AI
Answer:

  1. Mg, Ca: Calcium has large atomic radius. Since Mg and Ca are in same group Ca falling below Mg. Atomic radius increases from top to bottom In a group.
  2. Li, Cs: Cs has large atomic radius as Li and Cs are also in the same group and Cs lying below Li.
  3. N, P: Phosphorous has large atomic radius. As N and P are also In the same group and P lying below N.
  4. B, AI: Al has large atomic radius. B, Al are in same group III A and Al is below B.

Question 6.
Identify the element that has the lower Ionization energy in each pair of the following and mark it with a symbol (✓).
(i) Mg, Na
(ii) Li, O
(iii) Br, F
(iv) K, Br
Answer:

  1. Mg, Na: Na has low ionization energy. Since Mg, Na are in same period ionization energy increases from left to right. Na lies left to Mg. So Na has lower ionization energy.
  2. Li, O: Li has lower ionization energy. U lies left to ‘O’ in 2nd period.
  3. Br, F: Bromine has lower ionization energy; Br & F are in same group. IE decreases from top to bottom. Bromine is below F. So It has lower lE.
  4. K, Br: ‘K’ has lower ionization energy. Since it is left to Br in the same period.

Question 7.
How does metallic character change when we move
(i) Down in a group?
(ii) Across a period?
Answer:
(i) Down in a group?
Metallic character increases when we move down the group.
(ii) Across a period?
Answer:
Metallic character decreases when we move along a period.

Question 8.
On the bails of atomic numbers predict to which block the elements with atomic number 9, 37, 46 and 64 belong to?
Answer:

  1. Electronic configuration of element with atomic number 9 is 2, 7 – belongs to p-block.
  2. Electronic configuration of element with atomic number 37 is 2, 8, 8, 18, 1 – belongs to s- block.
  3. Electronic configuration of element with atomic number 46 is 2, 8, 8, 18, 10 – belongs to d – block.
  4. Electronic configuration of element with atomic number 64 Is 2, 8, 8, 18, 18, 10 -belongs tO f – block.

Question 9.
Using the periodic table, predict the formula of compound formed between an element X of group 13 and another element Y of group 16.
Answer:
Element X of group 13 Element Y of group 16
Valency of element X = 3 Valency of element Y
18-16=2
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 7
Compound: X2Y3

Question 10.
An element has atomic number 19. Where would you expect this element in the periodic table and why?
Answer:
The element with atomic number 19 is in 4th’ period and first group of periodic table.
Reason:

  1. Electronic configuration : Is2 2s2 2p6 3s2 3p6 4s1’.
  2. The differentiating electron enters Into 4t shell. Hence it belongs to 4th period.
  3. The differentiating electron is In ‘s’ orbital. So it belongs to ‘s’ block.
  4. The outermost orbital has only one electron. Hence it belongs to first group.

Question 11.
Elements In a group generally possess similar properties, but elements along a period have different properties. How do you explain this statement?
Answer:

  1. Physical and chemical properties of elements are related to their electronic configurations, particularly the outer shell configurations.
  2. The atoms of the elements in a group possess similar electronic configurations. Therefore, we expect all the elements in a group should have similar chemical properties and there should be a regular gradation in their physical properties from top to bottom.
  3. But in a period from left to right, elements get an increase in the atomic number by one unit between any two successive elements.
  4. Therefore, the electronic configuration of valence shell of any two elements in a given period is not same. Due to this reason elements along a period possess different chemical properties with regular gradation in their physical properties from left to right.

TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table

Question 12.
Name two elements that you would expect to have chemical properties similar to Mg. What is the basis for your choice?
Answer:

  • Calcium (Ca) and Stranúum (Sr) are the two elements, which are similar to Mg in chemical properties.
  • Because they belong to the same group lIA. Ail the elements which are in the same group have same electronic configuration and same chemical properties.

Question 13.
An element X belongs to 3rd perIod and group 2 of the periodic table. State (a) The no. of valence electrons in it (b) The valency (C) Whether It is metal or a non-metal.
Answer:
The element ‘X’ belongs to 3rd peñad and group 2 is Mg.
(a) The no.of valence electrons 2.
(b) The valency = 2.
(c) It is a metal.

Question 14.
How do you appreciate the role of electronic configuration of the atoms of elements In perIodic classification?
Answer:

  1. According to Modern Periodic Iaw the properties of elements are the functions of their atomic number or electronic configuration”.
  2. Elements having same number of valence electrons are placed in the same group based on their electronic configuration.
  3. So, we can easily locate the position of any element in the periodic table with Its electronic configuration.
  4. Hence electronic configuration plays a major role In the preparation of Modern period table. So its role is thoroughly appreciated.

Question 15.
Without knowing the electronic configurations of the atoms of elements Mendeleeff still could arrange the elements nearly close to the arrangements in the modern periodic table. How can you appreciate this?
Answer:

  1. Mendeleeff’s vision must be appreciable because he left some gaps predicting the existing of some elements, which are not available at that time.
  2. Atomic weights of some elements can be corrected by placing them In correct places.
  3. If we compare the long-form periodic table with Mendeleeff’s table, we find many elements with their places unchanged.
  4. One can see from these discussions, that the Mendeleeffs accurate prediction and their eventual success made him and his classification of elements famous, Even today his table of elements Is followed with minimum modifications.

Question 16.
Comment on the position of hydrogen in periodic table.
Answer:

  1. The configuration of Hydrogen (1s1) Is responsible for its dual nature.
  2. Either the electron can be lost behaving as electropositive elements (H+) like alkali metals or the electron can be gained as to complete, is subshell behaving as electronegative element (H) like halogens.
  3. The position of Hydrogen is not fixed in the periodic table sometimes it is placed with alkali metals and sometimes with halogens.
  4. However, Hydrogen exhibits other properties which differ from both alkali metals and halogens.

Higher Order Thinking Questions

Question 1.
How does the positions of elements In the periodic table help you to predict Its chemical properties? Explain with an example.
Answer:

  1. The physical and chemical properties of atoms of the elements depend on their electronic configuration, particularly the outer shell configurations.
  2. Elements are placed in the periodic table according to the increasing order of their electronic configuration.
  3. The elements In a group possess similar electronic configurations. Therefore all the elements in a group should have similar chemical properties.

Eg: Consider K

  • It is the element In 4th’ period 1st’ group.
  • It is on left side of the periodic table. Hence It Is a metal.
  • It is ready to lose an electron to get octet configuration. Hence its reactivity is more.
  • It is Alkali metal.
  • All alkali metals react with both acids and bases and release H2 gas.

Question 2.
In period 2, element X is to the right of element Y. Then find which of the elements have
(i) Low nuclear charge
(ii) Low atomic size
(iii) High Ionisation energy
(iv) High electronegativity
(v) More metallic character.
Answer:
X s to the right of Y. So they will be YX
(i) Low nuclear charge: Nuclear charge increases from left to right in a period. So Y has low nuclear charge.
(ii) Low atomic size: Atomic size decreases from left to right in a period. So X has low atomic size.
(iii) High ionization energy: Ionization energy increases across a period from left to right. So X has high ionization energy.
(iv) More metallic character: Metallic nature decreases from left to right. So Y has more metallic character.

TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table

Multiple choice questions

Question 1.
Number of elements present in period -2 of the long fom of periodic table ………………. [ ]
(a) 2
(b) 8
(c) 18
(d) 32
Answer:
(b) 8

Question 2.
Nitrogen (Z = 7) is the element of group VAofthe periodic table. Which of the following is the atomic number of the next element in the same group’? [ ]
(a) 9
(b) 14
(c) 15
(d) 17
Answer:
(c) 15

Question 3.
Electron configuration of an atom is 2,8,7. To which of the following elements would it be chemically similar? [ ]
(a) nitrogen(Z=7)
(b) fluorine(Z = 9)
(c) phosphorous(Z = 15)
(d) argon(Z=1 8)
Answer:
(b) fluorine(Z = 9)

TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table

Question 4.
Which of the following is the most active metal? [ ]
(a) lithium
(b) sodium
(c) potassium
(d) rubidium
Answer:
(d) rubidium

Suggested Experiments

Question 1.
Aluminium does not react with water at room temperature but reacts with both dil. HCl and NaOH solutions. Verify these statements experimentally. Write your observations with chemical equations. From these observations, can we conclude that Al is a metalloid?
Answer:
1. Aluminum reacts with dii. HCl and releases hydrogen gas with formation of Aluminium chloride.
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 8
2. Aluminium reacts with NaOH solution and releases hydrogen gas.
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 9
3. Aluminium does not react with water at room temperature. This concludes that the properties of Aluminium in between a metal and non-metal. So it behaves like a metalloid.

Suggested Projects

Question 1.
Collect the Information about reactivity of VIII A group elements (noble gases) from your school library and prepare a report on their special character when compared to other elements of periodic table.
Answer:

  1. The elements of Group VIII A (noble gases) are chemically inactive, because all of them have stable “Octet” configurations, except He.
  2. He has two electrons in the outermost orbital, i.e., is orbitalis is the maximum, the is orbital can accommodate. Hence “He” is also inactive.
  3. The losing or gaining an electron or sharing of electrons is difficult due to high I.E. and zero E.A value of inert gases.
  4. Under suitable conditions, the heavier elements of the group form compounds with F2 and O2 or XeF2 or XeO2F2.
  5. Ar forms coordination compounds with BF3 whose composition is Ar.n.BF3
  6. Xenon Hexa fluoro platinate (IV)(Xe[PtF6]) was prepared by N.Barltel. This was the first compounds of inert gases. After this compounds of Xenon with F2 and O2 were prepared.
  7. The compounds of inert gases have found varied applications in recent times.

Question 2.
Collect information regarding metallic character of elements of IA group and prepare report to support the idea of metallic character increases In a group as we move from top to bottom.
Answer:
Group IA elements are Li, Na, K, Rb, Cs, and Fr
1. Metallic character is the name given to the set of chemical properties associated with elements that are metals.

2. Chemical characteristics of metals include the following

  • form cations in ionic compounds with non-metals.
  • have ionic halides.
  • have ionic hydrides containing the H’ ion.
  • have basic oxides.

3. The elements with less electronegative character are metals.
4. All IA group elements have less electronegative characters because they are ready to lose one electron to get octet configuration.
5. If we observe this group, we can find that

Reaction with non-metals:
4M + O2 → 2M2O. In this cation is M+
Hydrides:
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 10
M stands for alkali metal.
Order of ionic nature of hydrides Is LiH < NaH < KH < RbH < CSH
Halides:
2M+X2 → 2MX
where M stands for alkali metal and X stands for halogen.
All the metal halides are ionic.

Oxides:
4M + O2 → 2M2O
But, 4 Li + O2 →‘ 2 Li2O2
All metals form peroxides.
6. From the above reactions we conclude that Group IA elements are metals and their metallic character increases as we go down in the group.

TS 10th Class Physical Science Classification of Elements- The Periodic Table Intext Questions

Page 124

Question 1.
Can you establish the same relationship with the set of elements given in the remaining rows?
Answer:
Yes, we can establish the same relationship with the set of elements given in the remaining rows.

Question 2.
Find average atomic weights of first and third elements ¡n each row and compare It with the atomic weight of the middle element.
Answer:
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 11

Question 3.
What do you observe?
Answer:
Dobereiner’s attempts gave a clue that atomic masses could be correlated with properties of elements.

Page 137

Question 4.
Find out the valencies of first 20 elements.
Answer:

ElementValency
1.Hydrogen1
2. Helium0
3. Lithium1
4. Berflium2
5. Boron3
6. Carbon4
7. Nitrogen3
8. Oxygen2
9. Fluorine1
10. Neon0
11. Sodium1
12. Magnesium2
13. Aluminium3
14. Silicon4
15. Phosphorous3, 5
16. Sulphur2, 6
17. Chlorine1
18. Argon0
19. Potassium1
20. Calcium2

(b) How does the valency vary in a period on going from left to right?
Answer:
The valency increases from 1 to 4 and then decreases to zero as we move from left to right in a period with respect to Hydrogen. The valency increases from 1 to 7 with respect to oxygen, in a period from left to right.

(c) How does the valency vary on going down a group?
Answer:
The valency remains same in a group.

Page 139

Question 5.
Do the atom of an element and Its Ion have same size?
Answer:
No, the atom of an element and its ion do not have the same size. The size of cation is less than its neutral atom and size of anion Is greater than its neutral atom.

TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table

Question 6.
Which one between Na and Na would have more size? Why?
Answer:

  1. The atomic number of sodium is ti and It has 11 protons and ii electrons with outer electron as3s’ whereas Na4 ¡on has il protons but only 10 electrons.
  2. The 3s1 shell of Na has no electron In It.
  3. So the outer shell configuration is 2S2 2p6.
  4. As proton number is moie than electrons the nudeus of Na+ ion attracts outer shell electrons with strong nudear force.
  5. As a result the Na lori shrinks In size.
  6. Therefore, the size of Na ion is less than Na atom.

Question 7.
Which one between Cl and Cl would have more size? Why?
Answer:
The electronic configuration of Cl is 1s22s22p63s23p5 whereas Cl is 1s22s22p63s2 3p6. In Cl , same no.of protons are attracting more number of electrons compared to Cl. Due to decrease in effective nuclear attraction atomic size of anion is more than its neutral atom.

Question 8.
Which one in each of the following pairs Is larger In size?
a) Na, AI
b) Na, Mg+2
c) S2, Cl
d) Fe+2, Fe+3
e) C-4, F
Answer:
a) Na
b) Na
c) S-2
d) Fe+2
e) C-4

Think And Discuss

Question 1.
What relation about elements did Doberelner wanted to establish?
Answer:
The relative atomic mass of the middle element En each triad is nearer to the average of the relative atomic masses of other two elements. This is what Doberelner wanted to establish.

Question 2.
The densities of Calcium (Ca) and Barium (Ba) are 1.55 and 3.51gm/ cm3 respectively. Based on Doberolner’s law of triads can you give the approximate density of strontium (Sr)?
Answer:
The density of strontium = (1.55 + 3.51 )/2 = 5.06 / 2 = 2.53gm/cm3

Question 3.
Do you know why Newland’s proposed the law of octaves? Explain your answer In terms of the structure of atom.
Answer:
Newlands proposed the law of octaves. According to this law, every 8” element starting from a given elements resembles in its properties to that of starting element with the elements with similar chemical properties are to be present along horizontal.

In modem periodic table, every period starts with a new shell and ends when the shell is filled. We know about octet configuration. Newlands law of octaves Is similar to octet. configuration.

Question 4.
Do you think that Newlands law of octaves is correct? JustIfy.
Answer:
Newlands law of octaves is corretc. Mendeleeff also suggested only 8 groups in his table. Later it was discovered that eighth element has the same properties as the first one.

Question 5.
Why Mendeleeff had to leave certain blank spaces In his periodic table. What is your explanation for this?
Answer:
Based on the arrangement of the elements in the table, he predicted that some elements were missing and left blank spaces at the appropriate places In the table. Mendeleeff believed that some new elements would be discovered definitely. He predicted the properties of these new additional elements in advance purely depending on his table. His predicted properties were almost the same as the observed properties of those elements after their discovery.

Question 6.
What is your understanding about Ea2O3 and EsO2?
Answer:
Ea2O3 is the predicted formula of oxide,of the predicted element In eka – Aluminium group, This is similar to Ga2O3, the observed property of oxide of Gallum, which was discovered in 1875. EsO2 is the predicted formula of oxide of predicted element In eka-silicon group. This is similar to GeO2, the observed property of oxide of Germanium, which was discovered in.1886.

Question 7.
All alkali metals are solids but hydrogen is a gas with diatomic molecules. Do you justify the inclusion of hydrogen in first group with alkali metals?
Answer:
The similarity of hydrogen with alkali metals is ns’ configuration and ability to exhibit +1 oxidation state. Hydrogen, because of its small size and high electronegativity, it is a non-metal with high I.P. It shares one electron with another hydrogen and forms diatomic molecules. Due to weak van der Waals forces of attraction It is a gas whereas in alkali metals, metallic bond is present hence they are solids. Hence, hydrogen cant be included in first group along with alkali metals.

Question 8.
Why lanthanoids and actinoids placed separately at the bottom of the periodic table?
Answer:
Lanthanolds and actinoids are placed separately in the periodic table to maintain its structure and to preserve the principle of classification with similar properties in a single column.

Question 9.
If they are inserted within the table imagine how the table would be?
Answer:
If f-block elements are inserted within the table, the table would be too long.

Question 10.
Second Ionization energy of an element is higher than Its first ionization energy. Why?
Answer:
The required to remove first electron from the outermost orbit or shell of a neutral gaseous atom is called first ionization energy (IE1).
The energy required to remove an electron from uni-positive ion is called the 2nd ionization energy (IE2).
The second ionization energy (IE2) is greater than the first ionization energy (IE1). On removing an electron from an atom, the uni-positive ion formed will have more effective nudear charge than the neutral atom. This decreases the repulsion between the electrons and at the same time increases the nuclear attraction on the electron in the outer shells. As a result, more energy is required to remove an electron from the uni-positive ion. Hence the second ionization
energy is greater than the first ionization energy.

Question 11.
The calculated electron gain enthalpy values for alkaline earth metals and noble gases are positive. How can you explain this?
Answer:
Due to completely filled s-subshell in alkaline earth metals and completely filled valence shell (i.e. octet) in noble gases, they are highly stable. Hence energy Is required to add an electron I.e their electron gain enthalpy values are positive.

Question 12.
The second-period element, for example, F has less electron gaIn enthalpy than the third-period element of the same group for example ‘Cl’. Why?
Answer:
The atomic size of second period elements decreases and electron number increases as we move from left to right. Because of this elements of N, O, F possess vert small size and high electron density. Hence incoming electron feels repulsion due to existing electrons. Because of this, electron gain enthalpy
is less for second-period element compared to third period of the same group (In 5th’ , 6th and 7th groups).

TS 10th Class Physical Science Classification of Elements- The Periodic Table Activities

Activity 1

Question 1.
Observe the following table and till It.
Answer:
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 12
Observations:
a) Can you establish the same relationship with the set of elements given In the remaining rows?
Answer:
Except in the first row, we cannot establish the relationship as said by law of triads.
b) Find average atomic weights of first and third elements in each row and compare It with the atomic weights of the middle element.
Answer:
From table we observe that. except Group A, in the remaining Groups, the average of atomic weights of first and third elements is roughly equal to the middle elements.

c) What do you observe?
Answer:
Dobereiner’s attempt gave a clue that atomic mass could be correlated with properties of elements.

TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table

Activity 2

Question 2.
Write the different chemical families and write involved, valency of the family.
Answer:
TS 10th Class Physical Science Solutions Chapter 7 Classification of Elements- The Periodic Table 13

Question 3.
(a) Find out the valencies of first 20 elements.
(b) How does the valency vary in a period on going from left to right?
(c) How does the valency vary on going down a group?
Answer:

ElementValency
1.Hydrogen1
2. Helium0
3. Lithium1
4. Berflium2
5. Boron3
6. Carbon4
7. Nitrogen3
8. Oxygen2
9. Fluorine1
10. Neon0
11. Sodium1
12. Magnesium2
13. Aluminium3
14. Silicon4
15. Phosphorous3, 5
16. Sulphur2, 6
17. Chlorine1
18. Argon0
19. Potassium1
20. Calcium2

(b) How does the valency vary in a period on going from left to right?
Answer:
The valency increases from 1 to 4 and then decreases to zero as we move from left to right in a period with respect to Hydrogen. The valency increases from 1 to 7 with respect to oxygen, in a period from left to right.

(c) How does the valency vary on going down a group?
Answer:
The valency remains same in a group.

TS 10th Class Maths Important Questions Chapter 2 Sets

These TS 10th Class Maths Chapter Wise Important Questions Chapter 2 Sets given here will help you to solve different types of questions.

TS 10th Class Maths Important Questions Chapter 2 Sets

Previous Exams Questions

Question 1.
Write roster and builder form of “The set of all natural numbers which divide 42”. (T.S. Mar. ’15)
Solution:
Factors of 42 = 1, 2, 3, 6, 7, 14, 21, 42
So roster form = {1, 2, 3, 6, 7, 14, 21, 42}
The builder form = (x/x ∈ N, x is a factor of 42 }

Question 2.
Write A = {1, 2, 3, 4} in set builder form. (A.P. June ’15)
Solution:
The given set A = {1, 2, 3, 4}
The set builder form is A = {x/x ∈ N, x < 5 }

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 3.
Let A = { x/x is an even number }
B = { x/x is an odd number}
C = { x/x is a prime number}
D = { x/x is a multiple of 5 }
Find (A.P. June’15)
i) A ∪ B
ii) A ∩ B
iii) C – D
iv) A ∩ C
Solution:
A = { x : x is an even number }
= {2, 4, 6, 8, 10}
B = { x : x is an odd number}
= {1, 3, 5, 7, 9 }
C = { x : x is a prime number}
= { 2, 3, 5, 7, 11}
D = { x : x is a multiple of 5}
= { 5, 10, 15, 20, 25}

i) A ∪ B = { 2, 4, 6, 8, 10, ……..} ∪ {1, 3, 5, 7, 9, …….}
= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …………}

ii) A ∩ B = { 2, 4, 6, 8, 10, ……….} ∩ {1, 3, 5, 7, 9, ………… }
= { } = Φ

iii) C – D = {2, 3, 5, 7, 11, ……….} – { 5, 10, 15, 20, 25, ………}
= {2, 3, 7, 11, …….}

iv) A ∩ C = { 2, 4, 6, 8, 10, ………….} ∩ {2, 3, 5, 7, 11, ……….}
= {2}

Question 4.
Write all the subsets of B = {p, q} (A.P. Mar ’16)
Solution:
{p}, {q}, {p, q} and { } are the subsets of the given set B = (p, q}
As then n(B) = 2 then number of all subsets = 2n = 22 = 4.

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 5.
Write the roster form of the set A. (A.P. Mar. ’16)
A = {x : x = 2n + 1 ∀ n ∈ N}
Solution:
If n = 1 then 2n + 1 = 2(1) + 1
= 2 + 1 = 3
If n = 2 then 2n + 1 = 2(2) + 1
=4 + 1 = 5
If n = 3 then 2n + 1 = 2(3) + 1
= 6 + 1 = 7
So {3, 5, 7, 9, ………..} is the roster form of given set.

Question 6.
If A = {1, 2, 3, 4} and B = (1, 2, 3, 5, 6} then find
(i) A ∩ B
(ii) B ∩ A
(iii) A – B and
(iv) B – C then comment on the above. (A.P. Mar. ’16)
Solution:
Given A = {1, 2, 3, 4} and B = { 1, 2, 3, 5, 6} then
i) A ∩ B = {1, 2, 3, 4} ∩ { 1, 2, 3, 5, 6}
= {1, 2, 3}

ii) B ∩ A = {1, 2, 3, 5, 6} ∩ { 1, 2, 3, 4}
= {1, 2, 3}
So A ∩ B = B ∩ A

iii) A – B = {1, 2, 3, 4} – { 1, 2, 3, 5, 6}
= {4}

iv) B – A = { 1, 2, 3, 5, 6} – {1, 2, 3, 4}
= {5, 6}
So A – B ≠ B – A

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 7.
Write the Set builder form of A – B where A = { x : x ∈ N and x < 20 } and B = { x : x ∈ N and x ≤ 5 } (T.S. Mar. ’16)
Solution:
Given A = { x : x ∈ N and x < 20 } is
A = {1, 2, 3, …….. 17, 18, 19} and
for B = {x : x ∈ N and x ≤ 5}
B = { 1, 2, 3, 4, 5} then
A – B = {1, 2, 3, ……… 17, 18, 19} – {1, 2, 3, 4, 5}
= {6, 7, 8, …… 18, 19} (T.S. Mar ’15)
The builder form of above A – B is
A – B = {x/x ∈ N and 6 ≤ x ≤ 19}
Or
A – B = {x : x ∈ N and 5 < x < 20}

Question 8.
If A = {x / x ∈ N, x < 6 } and B = { x : x ∈ N, 3 < x < 8} then show that A – B ≠ B – A with the help of venn – diagram.
Solution:
A = {x : x ∈ N, x < 6}
A = {1, 2, 3, 4, 5}
B = {x : x ∈ N, 3 < x < 8}
B = {4, 5, 6, 7}
∴ A – B = {1, 2, 3, 4, 5} – {4, 5, 6, 7}
= {1, 2, 3}
TS 10th Class Maths Important Questions Chapter 2 Sets 5
and
B – A = {4, 5, 6, 7} – {1, 2, 3, 4, 5}
= {6, 7}
TS 10th Class Maths Important Questions Chapter 2 Sets 6
∴ A – B ≠ B – A

Question 9.
Write the set builder form of A = {1, \(\frac{1}{4}\), \(\frac{1}{9}\), \(\frac{1}{16}\), \(\frac{1}{25}\)} (T.S. Mar. ’16)
Solution:
{\(\frac{1}{1}\), \(\frac{1}{4}\), \(\frac{1}{9}\), \(\frac{1}{16}\), \(\frac{1}{25}\)} are in the form of \(\frac{1}{\mathrm{p}^2}\) whereas p < 6
So, A = { x : x = \(\frac{1}{\mathrm{p}^2}\), p ∈ N, and p < 6} is the set builder form.

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 10.
If x is set of all factors of 24 and y is set all factors of 36 then find X ∪ Y and X ∩ Y using venn – diagrams. Comment. (T.S. Mar. ’16)
Solution:
X = Set of all factors of 24
= {1, 2, 3, 4, 6, 8, 12, 24}
Y = Set of all factors of 36
= {1, 2, 3, 4, 6, 9, 12, 18, 36}
Venn diagram of X ∪ Y
i)
TS 10th Class Maths Important Questions Chapter 2 Sets 7
∴ X ∪ Y = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36}

ii)
TS 10th Class Maths Important Questions Chapter 2 Sets 8
∴ X ∩ Y = {1, 2, 3, 4, 6, 12}
∴ It is clear X ∪ Y ≠ X ∩ Y

Additional Questions

Question 1.
Which of the following are sets ? Justify your answer.
i) The collection of all months of a year beginning with letter ‘M’
ii) A team of eleven best cricket players of the world.
iii) The collection of all girls in your class.
iv) The collection of all odd integers.
Solution:
i) The months of a year which begin with the letter ‘M’ are March and May.
The required set is {March, May}.
∴ It is a well defined collection of objects.
So, it is a set.
ii) It is not a set, because we cannot determine the eleven best cricket players of the world.
iii) It is a set, because we can divide whether he / she belongs to the given set or not.
iv) It is a set, because we can divide whether the number belongs to the given set or not.

Question 2.
If A = (1, 2, 3, 4} B = (5, 6, 7} and C = (p, q, r, s}, then fill the appropriate symbol, ∈ or ∉ in the blanks.
i) 2 ………… A
ii) 6 …………. C
iii) 4 ………… B
iv) q …………. C
v) 5 …………. B
vi) 8 …………. A
Solution:
i) 2 ∈ A
ii) 6 ∉ C
iii) 4 ∉ B
iv) q ∈ C
v) 5 ∈ B
vi) 8 ∉ A

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 3.
Express the following statements using symbols.
i) The element p does not belong to ‘A’
ii) ‘q’ is an element of the set ‘B’
iii) 4 belongs to the set of Natural numbers N
iv) 5 belongs to the set prime numbers P
Solution:
i) p ∉ A
ii) q ∈ B
iii) 4 ∈ N
iv) 5 ∈ p

Question 4.
Write the following sets in roaster form.
i) A = (x : x is a natural number less than 8}
ii) B = (x : x is a two digital natural number such that the sum of its digits is 5}
iii) C = (x : x is a prime number which is a divisor of 30}
iv) D = { the set of all letters in the word CRICKET}
Solution:
i) A = (1, 2, 3, 4, 5, 6, 7}
ii) B = (14, 41, 23, 32}
iii) C = (2, 3, 5}
iv) D = { C, E, I, K, R, T}

Question 5.
Write the following sets in the set-builder form.
i) A = {5, 10, 15, 20}
ii) B = {3, 9, 27, 81}
iii) C = {4, 16, 64, 256}
iv) D = {1, 8, 27, 64, 125, ……….. 1000}
Solution:
i) A = {x : x is a multiple of 5 and less than 21}
ii) B = {x : x is a power of 3 and x is less than 5}
iii) C = {x : x is a power of 4, and x is less than 5}
iv) D = {x : x is a cube of natural numbers and not greater than 10}

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 6.
Match the roaster form with set builder
i) {1, 2, 4, 8} (a) (x : x is an even natural number less than 11}
ii) {3, 5} (b) (x : x is a natural number and divisor of 8}
iii) {L, E, T, R} (c) (x : x is a prime number and a divisor of 15}
iv) (2, 4, 6, 8, 10}(d) (x : x is a letter of the word ‘LETTER’}
Solution:
i) b
ii) c
iii) d
iv) a

Question 7.
If A = {1, 2, 3, 4, 5}; B = {3, 4, 5, 6}, then find A ∪ B and A ∩ B.
Solution:
Given A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6}
A ∪ B = {1, 2, 3, 4, 5, 6}
A ∩ B = {3, 4, 5}.

Question 8.
If A = {4, 5, 6, 7, 8}; B = {7, 8, 9, 10, 11} then find A – B and B – A.
Solution:
Given A = {4, 5, 6, 7, 8},
B = {7, 8, 9, 10, 11}
A – B = {4, 5, 6}
B – A = {9, 10, 11}

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 9.
Which of the following pairs of sets are disjoint ?
i) A = {3, 4, 5, 6}; B = {4, 6}
ii) A = {a, e, i, o, u}; B = {i, j, k}
iii) A = {5, 10, 15, 20}; B = {8, 16, 24}
iv) A = {1, 3, 5, 7};B = {2, 4, 6, 8}
Solution:
Disjoint sets: Two sets are said to be disjoint sets when they have no elements in common.
i) A and B are not disjoint sets (∵ 4, 6 are common)
ii) A and B are not disjoint sets (∵ i is common)
iii) A and B are disjoint sets (∵ No elements in common)
iv) A and B are disjoint sets (∵ No elements in common)

Question 10.
If A = {3, 4, 5, 6, 7}, B = {2, 4, 6, 8} then find n (A ∪ B).
Solution:
n(A) = 5 (∵ A contains 5 elements)
n(B) = 4 (∵ B contains 4 elements)
But A ∪ B = {2, 3, 4, 5, 6, 7, 8}
Now n(A ∪ B) = 7 (∵ A ∪ B contains 7 elements)

Question 11.
If A and B are two sets and n(A) – 15, n(B) = 25 and n(A ∩ B) = 10, find n (A ∪ B)
Solution:
We Know that n (A ∪ B) = n (A) + n (B) – n(A ∩ B)
∴ n(A ∪ B) = 15 + 25 – 10
n(A ∪ B) = 40 – 10 = 30

Question 12.
Which of the following sets are equal ?
i) A = {3, 4, 5, 6}, B = {7, 8, 9, 10}
ii) C = {a, b, c, d}, D = {d, c, a, b} :
iii) E = {2, 4, 6, 8}, F = {x : x is a positive even number < 10}
iv) G = {5, 10, 15, 20, . . . }, H = {x : x is a multiple of 5}
Solution:
i) A and B are not equal sets
ii) C and D are equal sets
iii) E and F are equal sets
iv) G and H are equal sets

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 13.
State the reason for the following.
i) {4, 5,6, ……….. 12} ≠ {x : x ∈ N and 4 < x < 12}
ii) {2, 4, 6, 8, 10} ≠ {x : x = 2n + 1 and x ∈ N}
iii) {3, 6, 9, 12} ≠ {x : x is a multiple of 6}
iv) {1, 3, 5, 7, 9} ≠ {x : x is an even number}
Solution:
The first set is {4, 5, 6, … ,12}
Writing the second set in roaster form is {5, 6, 7, …,11}
The 1st and 2nd set have not exactly the same elements.
i) ∴ {4, 5, 6, . . . , 12} ≠ {x : x ∈ N and 4 < x < 12}

ii) The first set is {2, 4, 6, 8, 10}
Writing the 2nd set in roaster form is {3, 5, 7, 9}
∴ {2, 4, 6, 8, 10} ≠ {3, 5, 7, 9}

iii) The first set is {3, 6, 9, 12}
Writing the 2nd set is roaster form is {6, 12, 18, 24, … }
∴ {3, 6, 9, 12} ≠ {6, 12, 18, 24,. . .}

iv) The first set is {1, 3, 5, 7, 9}
Writing the 2nd set in roaster form is {2, 4, 6, 8}
∴ {1, 3, 5, 7, 9} ≠ {2, 4, 6, 8,…}

Question 14.
List all the subsets of the following :
i) A = {a, b}
ii) B = {p, q, r}
iii) {1, 2, 3}
Solution:
i) {a}, {b}, {a, b}, {Φ}
ii) {p}, {q}, {r}, {p, q}, {p, r}, {q, r}, {p, q, r}, {Φ}
iii) {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1,2, 3}, {Φ}

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 15.
State which of the following sets are empty.
i) Set of integers which lie between 5 and 6.
ii) Set of even natural numbers divisible by 2.
iii) The set of lines which are parallel to the Y-axis.
iv) {x : x is a natural number, x < 6 and x > 8}
Solution:
i) It is empty set, because there is no integer lying between 5 and 6
ii) It is not empty set, because there are even natural numbers which are divisible by 2.
iii) It is not empty set, because there are number of lines parallel to the Y-axis is infinite.
iv) It is empty set, because there is no natural number satisfying this condition.

Question 16.
Which of the following set is finite or infinite ?
i) A = {x : x ∈ N and x < 50}
ii) B = {x : x ∈ N and x ≤ 10}
iii) C = {13, 23, 33, ……}
iv) D = {x : x ∈ N and x is even}
Solution:
i) A = {1,2, 3, 4,…. 49}
This set is finite, because there are 49 numbers possible to count

ii) B = {1, 2, 3, 4, . . . , 10}
This set is finite, because there are 10 numbers possible to count

iii) C = {13, 23, 33, . . . }
This set is infinite, because there are infinite numbers.

iv) D = {2, 4, 6, 8, . . . }
This set is infinite, because there are infinite even numbers.

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 17.
If A = {1, 2, 3, 4, 5}; B = {4, 5, 6, 7} then find B – A.
Solution:
Given A = {1, 2, 3, 4, 5}; B = {4, 5, 6, 7}
B – A = {4, 5, 6, 7} – {1, 2, 3, 4, 5}
B – A = {6, 7}

Question 18.
If A = {0, 1, 2} and B = {2, 4} then find n (A ∪ B)
Solution:
Given A = {0, 1, 2}, B = {2, 4}
A ∪ B = {0, 1, 2, 4}
∴ n(A ∪ B) = 4

Question 19.
If A’ is the set of all primes below ‘5’ and ‘B’ is the set of all prime factors of ’30’, then is A – B = B – A?
Solution:
Given A = Set of all primes below 5 = {2, 3}
B = Set of all prime factors of 30 = {2, 3, 5}
A – B = { } and B – A = { 5 }
∴ A – B ≠ B – A

Question 20.
Represent the following through Venn- diagram.
i) A – B
ii) B – A
iii) A ∪ B
iv) A ∩ B
Solution:
i) Venn-diagram of A – B is
TS 10th Class Maths Important Questions Chapter 2 Sets 1

ii) Venn-diagram of B – A is
TS 10th Class Maths Important Questions Chapter 2 Sets 2

iii) Venn-diagram of A ∪ B is
TS 10th Class Maths Important Questions Chapter 2 Sets 3

iv) Venn-diagram of A ∩ B is
TS 10th Class Maths Important Questions Chapter 2 Sets 4

Question 21.
If A = (x : Y is a Natural number below 10}
B = {x : Y is an even number below 10}
C = {x : Y is an odd number below 10}then
find (i) A – B
(ii) A – C
(iii) B ∪ C
(iv) Also mention the Mutually disjoint sets among (i), (ii) and (iii).
Solution:
Given A = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B = {2, 4, 6, 8}
C = {1, 3, 5, 7, 9}
i) A – B = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 4, 6, 8}
= {1, 3, 5, 7, 9}

ii) A – C = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {1, 3, 5, 7, 9}
= {2, 4, 6, 8}

iii) B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8, 9}

iv) (i) and (ii) are disjoint sets because there is no element in common.
(ii) and (iii) are not disjoint sets because there are 2, 4, 6, 8 common elements.
(i) and (iii) are not disjoint sets because there are 1, 3, 5, 7, 9 common elements.

TS 10th Class Maths Important Questions Chapter 2 Sets

Question 22.
If A = {1, 4, 9, 16, 25, . . . } then write it in set builder form.
Solution:
A = {1, 4, 9, 16, 25, ……..}
= {12, 22, 32, 42, 52, . . . . }
= {x2/ x ∈ N}

Question 23.
If A = {x / x is a prime number and x < 20} then B = {x / 2x + 1, x ∈ w and x < 9} then Find
(i) A ∩ B
(ii) B ∩ A
(iii) A – B
(iv) B – A. What do you observe ?
Solution:
A = {x / x is a prime number and x < 20}
B = {2x + 1, x ∈ w and x < 9}
∴ A = {2, 3, 5, 7, 11, 13, 17, 19}
B = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
1) A ∩ B = {2, 3, 5, 7, 11, 13, 17, 19} ∩ (1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
= {3, 5, 7, 11, 13, 17, 19}

2) B ∩ A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} ∩ {2, 3, 5, 7, 11, 13, 17, 19}
= {3, 5, 7, 11, 13, 17, 19}

3) A – B = {2, 3, 5, 7, 11, 13, 17, 19} – {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
= {2}

TS 10th Class Maths Important Questions Chapter 2 Sets

4) B – A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} – {2, 3, 5, 7, 11, 13, 17, 19}
= {1, 9, 15}
Note : i) A ∩ B = B ∩ A
ii) A – B ≠ B – A

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Students must practice these TS Inter 2nd Year Maths 2A Important Questions Chapter 3 Quadratic Expressions to help strengthen their preparations for exams.

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 1.
Find the roots of the equation
3x2 + 2x – 5 = 0.
Solution:
The roots of the quadratic equation
ax + bx + c = 0 are \(\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\)
Here a = 3, b = 2 and c = – 5.
Therefore the roots of the given equation are
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 1
Hence 1 and – \(\frac{5}{3}\) are the roots of the given equation.

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Another method:
We can also obtain these roots in the following way.
3x2 + 2x – 5 = 3x2 + 5x -3x – 5
= x(3x+5) – 1 (3x+5)
= (x-1) (3x + 5)
= 3 (x – 1) \(\left(x+\frac{5}{3}\right)\)
Since 1 and \(\frac{5}{3}\) are the zeros of 3x2 + 2x – 5, they are the roots of 3x2 + 2x – 5 = 0.

Question 2.
Find the roots of the equation
4x2– 4x + 17 = 3x2 – 10x – 17.
Solution:
Given equation can be rewritten as x2 + 6x + 34 = 0.
The roots of the quadratic equation, ax2 + bx + c = 0 are
\(\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\)
Therefore the roots of the given equation are
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 2
Hence the roots of the given equation are
– 3 + 5i and -3-5i

Question 3.
Find the roots of the equation
\(\sqrt{3} x^2+10 x-8 \sqrt{3}=0\)
Solution:
The roots of the quadratic equation a+ b
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 3

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 4.
Find the nature of the roots of 4x2 – 20x + 25 = 0.
Solution:
Here a = 4, b = -20 and c = 25
Hence Δ = b2 – 4ac = (-20)2– 4 (4) (25) = 0
Since Δ is zero and a, b, c are real, the roots of the given equation are real and equal.

Question 5.
Find the nature of the roots of 3x2 + 7x + 2 = 0.
Solution:
Here a=3, b=7 and c=2
Hence = b2 – 4ac
= (7)2 4(3) (2) = 25 = 52  > 0.
Since Δ = 5 is a square number, the roots of the given equation are rational and unequal.

Question 6.
For what values of m, the equation x2 – 2 (1 + 3m) x + 7 (3 + 2m) = 0 will have equal roots?
Solution:
The given equation will have equal roots if its discriminant is 0.
Here Δ = {- 2(1+3m))}2 + 4(1) 7(3 + 2m)
= 4(1+3m)2 – 28 (3+2m) = 4(9m2 – 8m – 20)
= 4 (m – 2) (9m + 10) = 36 (m – 2) m + \(\left(m+\frac{10}{9}\right)\)
Hence Δ = 0 ⇔ m = 2 or m= \(-\frac{10}{9}\)
Therefore the roots of the given equation are equal \(\left\{-\frac{10}{9}, 2\right\}\)

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 7.
If α and β are the roots of ax2 +bx + c = 0, find the values of α2 + β2 and α3 + β3 in terms of a, b, c.
Solution:
From the hypothesis
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 4

Question 8.
Form a quadratic equation whose roots are 2\(\sqrt{3}\) -5 and -2\(\sqrt{3}\) – 5.
Solution:
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 5

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 9.
Let α and β be the roots of the quadratic equation ax2 + bx + c = 0. If c ≠ 0, then form the quadratic equation whose roots are \(\frac{1-\alpha}{\alpha}\) and \(\frac{1-\beta}{\beta}\)
Solution:
From the hypothesis we have
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 6
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 7

Question 10.
Find a quadratic equation, the sum of whose roots is I and the sum of the squares of the roots is 13.
Solution:
Let a and 3 be the roots of a required equation
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 8

Therefore x2 – a + x a = 0 becomes  – x  – 6 = 0. This is a required equation.
Equations reducible to quadratic equations: We now explain by some illustrations how to solve some equations which are reducible to quadratic equations by suitable substitutions.

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 11.
Solve \(x^{\frac{2}{3}}+x^{\frac{1}{3}}\) – 2 = 0.
Solution:
On taking \(\mathrm{x}^{\frac{1}{3}}\) = t, the given equation becomes
t2 + t – 2= 0, which is a quadratic equation in t.
Hence a complex number a is a solution of the equation.
\(x^{\frac{2}{3}}+x^{\frac{1}{3}}\) – 2 = 0, if there exists λ such that λ2 + λ -2 = 0 and λ3 = α.
Therefore the set of all solutions of the given equation is
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 9
Therefore the solution set of the given equation is { – 8, 1}.

Question 12.
Solve 71+x +71-x = 50 for real x.
Solution:
The given equation can be written as
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 10
X = – 1 or x = 1
Therefore the solution set of the given equation is (-1, 1).

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 13.
Solve \(\sqrt{\frac{x}{1-x}}+\sqrt{\frac{1-x}{x}}=\frac{13}{6}\)
Solution:
On taking \(\sqrt{\frac{x}{1-x}}=t\) the given equation becomes
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 11

Question 14.
Find all numbers which exceed their square root by 12.
Solution:
Let x be any such number.
Then \(x = \sqrt{\mathrm{x}}\) + 12 ie., x – 12 = \(x = \sqrt{\mathrm{x}}\)
On squaring both sides and simplifying we obtain (x – 12)2
i.e., x2  – 24x 144 = x
i.e., x2 – 25x + 144 = 0
i.e.,x (x – 16) – 9(x – 16) = 0
i.e., (x – 16) (x – 9) = 0
The roots of the equation (x – 16) (x – 9) = 0 are 9 and 16.
But x = 9 does not satisfy equation (1), while x = 16 satisfies (1). Therefore the required number is 16.

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 15.
Prove that there is a unique pair of consecutive positive odd integers such that the sum of their squares is 290 and find it.
Solution:
Since two consecutive odd integers differ by
2, we have to prove that there is a unique
positive odd integer x such that
⇔ x2+(x+2)2=290 ……………. (1)
⇔ x2+ (x + 2)2 = 290
⇔x2 + x2 + 4x + 4 = 290
⇔ 2x2 + 4x – 286 = 0
⇔ x2 + 2x – 143 = 0
⇔ x2+ 13x – 11x – 143 = 0
⇔ x(x + 13) – 11 (x + 13) = 0
⇔ (x+ 13)(x – 11)=0
⇔ x∈( – 13,11)
Hence 11 is the only positive odd integer satisfying equation (1).
Therefore (11, 13) is the unique pair of integers which satisfies the given condition.

Question 16.
The cost of a piece of cable wire is Rs. 35/-. If the length of the piece of wire is 4 meters more and each meter costs Rs. 1/- less, the cost would remain unchanged. What is the length of the wire?
Solution:
Let the length of the piece of wire be ‘l’ meters and the cost of each meter be Rs. x I –
By the given conditions lx = 35 ……………………. (1)
Also, (1+ 4) (x – 1) = 35
i.e., lx – 1 + 4x – 4 = 35 ……………………… (2)
From (1) and (2), 35 – l + 4x – 4 = 35
i.e., 4x = l + 4
Therefore \(x=\frac{l+4}{4}\)
On substituting this value of ‘x’ in (1) and simplifying, we get
\(l\left(\frac{l+4}{4}\right)=35\)
i.e., l2 + 4l- 140 = 0
i.e., l2 + 14l – 10l- 140 = 0
i.e., l(l+ 14)-10 (1+ 14)=0
i.e., (l+ 14) (1- 10) = 0
The roots of the equation (l + 14) (l- 10) = 0 are-14 and 10.
Since the length can not be negative, i = 10
Therefore the length of the piece of wire is 10 metres.

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 17.
One fourth of a herd of goats was seen in the forest. Twice the square root of the number in the herd had gone up the bill and the remaining l5goatswere on the bank of the flyer. Find the total number of goats
Solution:
Let the number of goats in the herd be ‘x’.
By the given conditions, the number of goats seen in the forest is \(\frac{x}{4}\) the number of goats gone up the hill is \(2 \sqrt{x}\) and the number of the remaining goats which were on the bank of the river is 15.
Therefore \(\frac{x}{4}\) + \(2 \sqrt{x}\) + 15 = X
i.e., x + \(8 \sqrt{x}\) + 60 = 4x
i.e., 3x – \(8 \sqrt{x}\) –  60 = 0.
On taking \(\sqrt{x}\) = t, this equation becomes
3t2 – 8t – 60 = 0
i.e., 3t2– 18t+ 10t – 60 = 0
i.e.,3t(t – 6)+ 10(t – 6)=0
i.e.,(t – 6)(3t+ 10)=0
The roots of the equation (t – 6) (3t + 10) = 0 are 6 and \(-\frac{10}{3}\)
Hence 3x – \(8 \sqrt{x}\) – 60 = 0 = \(\sqrt{x}\) = 36
(since \(\sqrt{x}\) is non-negative)⇔ x = 36
Therefore the total number of goats in the herd is 36

Question 18.
In a cricket match Anli took one wicket less than twice the number of wickets taken by Ravi. If the product of the number of wickets taken by them is 15, find the number of wickets taken by each of them.
Solution:
Let the number of wickets taken by Anil and
Ravi be x and y respectively.
Then x = 2y – 1 …………… (1)
xy = 15 ……………(2)
From (1) and (2), (2y – 1) y = 15
i.e., 2y2-y-15=0
i.e., 2y2-6y + 5y- 15 = 0
i.e., 2y(y-3) + 5 (y-3) = 0
i.e., (y-3)(2y + 5)= 0
The roots of the equation (y – 3) (2y + 5) = 0 are 3 and \(-\frac{5}{2}\)
Since the number of wickets must be positive integer y = 3.
From (2) we get 3x = 15, i.e., x = 5
Therefore the wickets taken by Anil and Ravi are 5 and 3 respectively.

Question 19.
Some points on a plane are marked and they are connected pairwise by line segments. if the total number of line segments formed is 10, find the number of marked points on the plane.
Solution:
Let the number of points marked on the plane be ‘x’. Since each point is joined to the remaining (x – 1) points, the number of line segments having a given point as an end point is (x – 1). Hence the total number of line segments formed appears to be x (x – 1).
But in this counting, each line segment is counted exactly twice at each of its end points. Hence the total number of line
segments actually formed is \(\frac{x(x-1)}{2}\)
Therefore by hypothesis \(\frac{x(x-1)}{2}\) = 10
i.e., x – x – 20 = 0
i.e., (x – 5) (x +4) = 0
The roots of the equation (x – 5) (x + 4) = 0 are – 4 and 5.
x can not be negative, so x = 5.
Therefore the number of points marked on the plane is 5.

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 20.
Suppose that the quadratic equations ax2 + bx +c = 0 and bx2 + cx + a = 0 have a common root. Then show that
a3 + b3 + C3 = 3abc.
Solution:
The condition for two quadratic equations
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 12

Question 21.
For what values of x the expression – 5x – 14 is positive?
Sol.
Since x2 – 5x  – 14 = (x + 2) (x – 7), the roots of the equation x2 – 5x – 14 = 0 are – 2 and 7.
Flere the coefficient of x2 is 1, which is positive.
Hence x2 – 5x – 14 is positive when x < – 2 or x> 7.

Question 22.
For what values of x the expression  – 6x2+2x – 3 is negative?
Solution:
– 6x + 2x – 3 = 0 can be written as
6x2 – 2x + 3= 0.
The roots of this equation are
\(\frac{2 \pm \sqrt{(-2)^2-4(6)(3)}}{2(6)}\)
Therefore the roots of – 6x2+2x – 3 = 0 are non-real complex numbers.
Here the coefficient of x2 is – 6 which is negative.
Hence – 6x2 + 2x – 3 < 0 for all x R

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 23.
Find the value of x at which the following expressions have maximum or minimum.

(i) x2+5x+6
(ii) 2x – x2+7
Solution:
(i) In the expression x2+5x+6, the coefficient of x2 is positive.
So x2 + 5x + 6 has absolute minimum at
x – (since b=5, a= 1).

(ii) In the expression 2x – x2 + 7, the coefficient of x2 is negative.
So 2x – x2 + 7 has an absolute maximum at
\(x=-\frac{2}{2(-1)}=1\) (since b=2, a-1).

Question 24.
Find the maximum or minimum value of the quadratic expression.
(i) 2x – 7 – 5 x 2
(ii) 3x2 + 2x + 11
Solution:
(i) Comparing the given expression with ax2 + bx + C,
we have a = -5, b = 2 and c = – 7.
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 13

Question 25.
Find the changes in the sign of 4x – 5x2 + 2 for x ∈ R and find the extreme value.
Solution:
Comparing the given expression with
ax2 + bx+c, we have a = – 5 < 0.
The roots of the equation 5x2 – 4x – 2 = 0 are \(\frac{2 \pm \sqrt{14}}{5}\)
Therefore, when \(\frac{2-\sqrt{14}}{5}<x<\frac{2+\sqrt{14}}{5}\) the sign of 4x – 5x2 + 2 is positive and when
\(x<\frac{2-\sqrt{14}}{5} \text { or } x>\frac{2+\sqrt{14}}{5}\) the sign of 4x – 5x2 + 2 is negitive
Since a < 0, the maximum value of the expression 4x – 5x2 + 2 is
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 15

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 26.
Show that none of the values of the function \(\frac{x^2+34 x-71}{x^2+2 x-7}\) over R lies between 5 and 9.
Solution:
Let y0 be a value of the given function.
Then ∋ x0 ∈ R such that
\(y_0=\frac{x_0^2+34 x_0-71}{x_0^2+2 x_0-7}\)
If y0 = 1, then clearly y0 ∉(5,9).
Suppose that y0 ≠ 1.
Then the equation y0 (x2 + 2x – 7) = x2 + 34x – 71 is a quadratic equation and x0 is a real root of it.
Therefore(y0 -1)x2+(2y0 – 34)x – (7y0 – 71)
= 0 is a quadratic equation having a real root x0.
Since all the coefficients of this quadratic equation are real, the other root of the equation is also real.
Therefore
Δ = (2y0 – 34)2 +4 (y0 -1) (7y0 – 71) ≥ 0.
On simplifyìng this we get
y20 – 14y0 + 45 ≥ 0
i.e., (y0-5) (y0– 9) ≥ 0
Therefore y0 ≤ 5 or y0 ≥ 9.
Hence y0 does not lie in (5, 9).
Hence none of the values of the given function over R lies between 5 and 9.

Question 27.
Find the maximum value of the function
\(\frac{x^2+14 x+9}{x^2+2 x+3}\) over R.
Solution:
Since the discriminant of x2 + 2x + 3 is negative, x2 + 2x + 3 is never zero on R.
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 16
The above inequality is true even when y0 = 1.
Hence the range of the given function on R is a subset of [- 5, 4].
For m = 4, the equation (1 – m) x2 + (14 – 2m) x+ 9 – 3m = 0 is a quadratic equation with real coefficients and discriminant zero and hence has only one root which is real. Let it be α.
Then for m = 4, we have (1 – m) α2 + (14 – 2m) α + 9 – 3m = 0.
Hence \(\frac{\alpha^2+14 \alpha+9}{\alpha^2+2 \alpha+3}=m=4\)
Hence 4 is in the range of the given function.
Since the range is a subset of [-5, 4] and 4 is in the range, 4 is the absolute maximum value given function over R.

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 28.
Find the solution set of x2 + x – 12 ≤ 0 by both algebraic and graphical methods.
Solution:
Algebraic Method:
We have x2 + x – 12 (x + 4) (x – 3)
Hence – 4 and 3 are the roots of the equation x2 + x – 12 = 0
Since the coefficient of x2 in the quadratic expression x2 + x – 12 = 0 is positive, x2 + x – 12 is negative if – 4 < x < 3 and positive if either x < – 4 or x > 3.
Hence x2 + x – 12 ⇔ -4 ≤ x ≤ 3
Therefore the solution set is
{ x ∈ R : – 4 ≤ x ≤ 3}
Graphical Method:
Let y = f(x) x2 – x – 12
The values of y at some selected values of x are given in the following table:
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 17
The graph of the function y = f(x) is drawn using the above tabulated values.
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 18
Therefore from the graph of y = f(x we observe that
y = x2 – x – 12 ≤ 0 if i – 4 ≤ x≤3
Hence the solution set is {x ∈ R : – 4 ≤ x ≤ 3}.

Question 29.
Find the set of values of x for which the inequalities x2-3x-10<0, 10x – x2-16>0 hold simultaneously.
Solution:
We have x2 -3x – 10 (x + 2) (x – 5)
Flence – 2 and 5 are the roots of the equation x2-3x-10= 0.
Since the coefficient of x2 in the quadratic 30. expression x2 – 3x -10 is positive.
x2-3x-10<0 =-2<x<5
We have 10x – x2-16 = – (x – 2)(x – 8)
Hence 2 and 8 are the roots of the equation
10x – x2 – 16 = 0.
Since the coefficient of x2 in the quadratic expression 10x – x2 -16 is negative.
10x- x2-16>0=2 < x< 8
Hence x2 -3x -10 < 0 and
⇔ X∈ (-2,5)∩(2,8)
Therefore the solution set is {x∈R : 2 < x < 5}.
10x – x2 – 16 >0

Question 30.
Solve the inequation \(\sqrt{x+2}>\sqrt{8-x^2}\)
Solution:
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 19
We have (x + 2) >(8-x2)
⇔ x2+ x – 6>0
Now x2 + x-6 = (x + 3)(x-2)
Since -3 and 2 are the roots of the equation
x2 + x – 6 = 0 and the coefficient of x2 in x2 + x – 6 is positive
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 20

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 31.
Solve the inequation
\(\sqrt{(x-3)(2-x)}<\sqrt{4 x^2+12 x+11}\)
Solution:
The given inequation is equivalent to the following two inequalities.
(x-3) (2-x) ≥ 0 and (x – 3)(2-x)4x2+ 12x+11
(x – 3)(2- x)≥ 0 (x-2)(x-3)≤0
– x2+ 5x- 6<4x2 + 12x+ 11
⇔ 5x2 + 7x + 17 > 0
The discriminant of the quadratic expression 5x2 + 7x + 17 is negative.
Hence 5x2 + 7x + 17 > 0 ∀x ∈ R.
Hence the solution set of the given inequation is {x ∈R :2 ≤ x ≤ 3}.

Question 32.
Solve the inequation
\(\frac{\sqrt{6+x-x^2}}{2 x+5} \geq \frac{\sqrt{6+x-x^2}}{x+4}\)
Solution:
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 21
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 22

TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 33.
Solve the inequation
\(\sqrt{x^2-3 x-10}>(8-x)\)
Solution:
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 23
TS Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 24

TS Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Students must practice this TS Intermediate Maths 2A Solutions Chapter 9 Probability Ex 9(b) to find a better approach to solving the problems.

TS Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

I.
Question 1.
If 4 fair coins are tossed simultaneously, then find the probability that 2 heads and 2 tails appear.
Solution:
If getting Head and Tail are denoted by H, T the number of sample points in the sample space n(S ) = 24 = 16.
If E is the event of getting 2 heads and 2 tails then E = {THHT, TTHH, HTHT, HHTT, TTHH, HTTH}
∴ n ( E ) = 6
∴ Probability of getting 2 heads and 2 tails.
P(E) = \(\frac{n(E)}{n(S)}=\frac{6}{16}=\frac{3}{8}\)

Question 2.
Find the probability that a non-leap year contains
(i) 53 Sundays
(ii) 52 Sundays only.
Solution:
A non-leap year contains 365 days in which there are 52 full weeks and one day.
52 full weeks contain 52 × 7 = 364 days and
left out of one day may be either Sun, Mon, Tues, Wed, Thu, Fri or Sat.
∴ n(S) = 7.

i) For a non-leap year to contain 53 Sundays, we have only on possibility to have 365th day a Sunday.
∴ n(E) = 1

ii) For a non-leap year to contain 52 Sundays, we have 6 possibilities for 365th day be a day other Sunday
∴ n ( E ) = 6
∴ Probability of getting 52 Sundays in a non leap year is
∴ p(E) = \(\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{6}{7}\).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 3.
Two dice are rolled. What is the probability that none of the dice shows the number 2?
Solution:
n = 6, m = 2 i.e., n(S) = 6, n (E) = 2
P ( E ) = Probability of not getting 2 when a single die is rolled = \(\frac{5}{6}\).
∴ The probability of not getting 2 when two dice are rolled = \(\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right)=\left(\frac{5}{6}\right)^2\).

Question 4.
In an experiment of drawing a card at random from a pack, the event of getting a spade is denoted by A and getting a pictured card (King, Queen or Jack) is denoted by B. Find the probabilities of A, B, A ∩ B and A ∪ B.
Solution:
Total number of cards in the pack n ( S ) = 52
If A is the event of getting a spade card then n (A) = 13
∴ Probability of getting a spade card,
P(A) = \(\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}=\frac{13}{52}=\frac{1}{4}\).

If B is the event of getting a picture card (King, Queen or Jack) then n (B) = 12
(there are 4 kings, 4 queens and 4 jacks)
∴ Probability of getting a picture card = \(\frac{\mathrm{n}(\mathrm{B})}{\mathrm{n}(\mathrm{S})}=\frac{12}{52}=\frac{3}{13}\)
∴ P(B) = \(\frac{3}{13}\)
Common to the events A and B there is a spade king, spade queen and spade jack
∴ n(A ∩ B) = 3
∴ Probability of getting (A ∩ B) is
P(A ∩ B) = \(\frac{\mathrm{n}(\mathrm{A} \cap \mathrm{B})}{\mathrm{n}(\mathrm{S})}=\frac{3}{52}\)
By addition theorem,
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
= \(\frac{13}{52}+\frac{12}{52}-\frac{3}{52}=\frac{22}{52}=\frac{11}{26}\).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 5.
In a class of 60 boys and 20 girls, half of the boys and half of the girls know cricket. Find the probability of the event that a person selected from the class is either a boy or a girl who knows cricket.
Solution:
Let E, be the event of selecting a boy and E, be the event of selecting a person who knows cricket.
P(E1) = \(\frac{60}{80}\);
P(E2) = \(\frac{40}{80}\)
(30 boys + 10 girls who knows cricket)
P (E1 ∩ E2) = \(\frac{30}{80}\)
(∵ 30 boys are common to E1 and E2)
∴ Probability of selecting a boy or a girl who knows cricket is .
P(E1 ∪ E2) = P(E1) + P(E2) – P(E1 ∩ E2)
= \(\frac{60}{80}+\frac{40}{80}-\frac{30}{80}=\frac{70}{80}=\frac{7}{8}\)
∴ ProbabilIty of the event that a person selected from the class is either a boy or a girl who knows cricket = \(\frac{7}{8}\).

Question 6.
For any two events A and B, show that P\(\left(A^c \cap B^c\right)\) = 1 + P(A ∩ B) – P(A) – P(B)
Solution:
\(\left(A^c \cap B^c\right)\) = \((A \cup B)^c\)
∴ P\(\left(A^c \cap B^c\right)\) = P\((A \cup B)^c\)
= 1 – P(A ∪ B) (∵ P(S) = 1)
= 1 – [P (A) + P (B ) – P (A ∩ B)]
= 1 + P(A ∩ B) – P(A) – P(B)
[From Demorgan’s law \(\left(A^c \cap B^c\right)\) = \((A \cup B)^c\)].

Question 7.
Two persons A and B are rolling a dice on the condition that the person who gets 3 will win the game. If A starts the game, then find the probabilities of A and B respectively to win the game.
Solution:
Two persons A and B toss a die.
The probability of throwing 3 with a die = \(\frac{1}{6}\)
The probafility of not throwing 3 with the die = 1 – \(\frac{1}{6}\) = \(\frac{5}{6}\)
If A is to win, A must throw 3 in the 1st or 2nd or 3rd rounds etc.
P(A) = \(\frac{1}{6}+\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}+\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}+\ldots .\)
which is an infinite G.P. with a = \(\frac{1}{6}\)
r = \(\frac{5}{6} \cdot \frac{5}{6}=\left(\frac{5}{6}\right)^2\)
∴ P(A) = S
= \(\frac{a}{1-r}=\frac{\frac{1}{6}}{1-\left(\frac{5}{6}\right)^2}=\frac{6}{11}\)
B wins when A fails to win
∴ P(B) = \(P(A)^c\)
= 1 – P(A)
= 1 – \(\frac{6}{11}\) = \(\frac{5}{11}\).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 8.
A, B, C are 3 newspapers from a city, 20% of the population read A, 16% read B, 14% read C, 8% both A and B, 5% both A and C, 4% both B and C and 2% all the three. Find the percentage of the population who read atleast one newspaper.
Solution:
Given P(A) = \(\frac{20}{100}\),
P(B) = \(\frac{16}{100}\)
P(C) = \(\frac{14}{100}\)
P(A ∩ B) = \(\frac{8}{100}\)
P(A ∩ C) = \(\frac{5}{100}\)
P(B ∩ C) = \(\frac{4}{100}\) and
P(A ∩ B ∩ C) = \(\frac{2}{100}\)
∴ The percentage of the population who read atleast one newspaper.
∴ P(A ∪ B ∪ C) = P(A) + P(B) + P(C) – P(A ∩ B) – P(B ∩ C) – P(C ∩ A) + P(A ∩ B ∩ C)
= \(\frac{20}{100}+\frac{16}{100}+\frac{14}{100}-\frac{8}{100}-\frac{4}{100}-\frac{5}{100}+\frac{2}{100}\)
= \(\frac{35}{100}\)
∴ 35 % read as atleast one newspaper.

Question 9.
If one ticket is randomly selected from tickets numbered 1 to 30, then find the probability that the number on the ticket is
i) a multiple of 5 or 7
ii) a multiple of 3 or 5.
Solution:
Given n (S) = 30
i) Let E1 he the event of getting a number which is a multiple of 5.
Let E2 be the event of getting a number which is a multiple of 7..
n(E1) = {5, 10, 15, 20, 25, 30} = 6
and n(E2) = {7, 14, 21, 28} = 4
∴ P(E1) = \(\frac{n\left(E_1\right)}{n(S)}=\frac{6}{30}\)
P(E2) = \(\frac{\mathrm{n}\left(\mathrm{E}_2\right)}{\mathrm{n}(\mathrm{S})}=\frac{4}{30}\)
∴ P(E1 ∪ E2) = P(E1) + P(E2)
(∵ P(E1 ∩ E2) = 0, because E1 ∩ E2 = Φ)
= \(\frac{6}{30}+\frac{4}{30}=\frac{10}{30}=\frac{1}{3}\)

ii) Let E3 be the event of getting ticket which is a number multiple of 3.
Let E4 be the event of getting a number which is a multiple of 5.
n(E3) = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}
n(E3) = 10
∴ P(E3) = \(\frac{n\left(E_3\right)}{n(S)}=\frac{10}{30}=\frac{1}{3}\)
E4 = {5, 10, 15, 20, 25, 30} = 6
n(E4) = 6,
∴ P(E4) = \(\frac{\mathrm{n}\left(\mathrm{E}_4\right)}{\mathrm{n}(\mathrm{S})}=\frac{6}{30}=\frac{1}{5}\)
n(E3 ∩ E4) = {15, 30} = 2
∴ P(E3 ∩ E4) = \(\frac{\mathrm{n}\left(\mathrm{E}_3 \cap \mathrm{E}_4\right)}{\mathrm{n}(\mathrm{S})}=\frac{2}{30}\)
∴ P(E3 ∪ E4) = P(E3) + P(E4) – P(E3 ∩ E4)
= \(\frac{10}{30}+\frac{6}{30}-\frac{2}{30}=\frac{14}{30}=\frac{7}{15}\)
∴ Probability for the number on the ticket to be a multiple of 3 or 5 is \(\frac{7}{15}\).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 10.
If two numbers are selected randomly from 20 consecutIve natural numbers, find the probability that the sum of the two numbers is
i) an even number
ii) an odd number.
Solution:
i) Let A be the event that the sum of the numbers is even when two numbers chosen out of 20 consecutive positive integers.
n(S) = 20C2 = 190
n (A) = 10C2 + 10C2
= 45 + 45 = 90
∴ Probability for the sum of two numbers to be even = \(\frac{90}{190}=\frac{9}{19}\)

ii) Probability for the sum of numbers to be odd = 1 – \(\frac{9}{19}\) = \(\frac{10}{19}\).

Question 11.
A game consists of tossing a coin 3 tintes and noting its outcome. A boy wins if all tosses give tite same outcome and loses otherwise. Find the probability that the boy loses the gante.
Solution:
If a coin is tossed 3 times then the total number of sample points n(S) = 23 = 8
For winning the game all tosses gives the same outcome.
Let E be such that event then E = {HHH, TTT}
∴ n(E) = 2
P(E) = \(\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{2}{8}\)
∴ The probability for the boy to loose the game
P\((\overline{\mathrm{E}})\) = 1 – P(E)
= 1 – \(\frac{2}{8}\) = \(\frac{6}{8}\).

Question 12.
If E1, E2 are two events with E1∩ E2 = Φ, then show that
\(P\left(E_1^C \cap E_2^C\right)=P\left(E_1^C\right)-P\left(E_2\right)\).
Solution:
\(P\left(E_1^C \cap E_2^C\right)=P\left(E_1^C\right)-P\left(E_2\right)\)
= 1 – [P(E1 ∪ E2)]
= 1 – [P(E1) + P(E2)]
[∵ P(E1 ∩ E2) = P(Φ) = 0]
(∵ From Addition theorem)
= 1 – P(E1) – P(E2)
= \(\mathrm{P}\left(\mathrm{E}_1^{\mathrm{C}}\right)\) – P(E2).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

II.
Question 1.
A pair of dice is rolled 24 times. A person wins by not getting a pair of 6’s on any ot the 24 rolls. What is the probability of his winnIng ? (This is the problem proved by the French gambler Chevalier de Mere (1607 – 1685) to Blaise Pascal, who in turn discussed it with Pierre de Fermat and solved the saine).
Solution:
When a pair of dice are rolled at a time, we get n(S) = 36.
If \(\overline{\mathrm{E}}\) is the event of getting a pair of 6’s then
n(\(\overline{\mathrm{E}}\)) = 1
∴ P(\(\overline{\mathrm{E}}\)) = \(\frac{1}{36}\)
∴ Probability of getting a pair of 6’s when two dice are roiled at a time = \(\frac{1}{36}\)
∴ Probability of not getting a pair of 6’s when two dice are rolled = P (E)
= 1 – P (\(\overline{\mathrm{E}}\))
= 1 – \(\frac{1}{36}\) = \(\frac{35}{36}\)
∴ A person wins the game if the dice are rolled for 24 times without getting pair of sixes.
∴ The probability that the person wins the game = \(\left(\frac{35}{36}\right)^{24}\).

Question 2.
If P is a probability function, then show that for any two events A and B.
P(A ∩ B) ≤ P(A) ≤ P(A ∪ B) ≤ P(A) + P(B)
Solution:
Here P(A ∩ B) = P(A) . P\(\left(\frac{\mathrm{B}}{\mathrm{A}}\right)\) where
P\(\left(\frac{\mathrm{B}}{\mathrm{A}}\right)\) is the conditional probability of B relative to A.
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
∴ P(A ∩ B) ≤ P(A) …………(i)
(∵ P\(\left(\frac{\mathrm{B}}{\mathrm{A}}\right)\) ≤ 1)
P(A) ≤ P(A ∪ B) …………..(ii)
(∵ A ⊆ A ∪ B)
∴ P(A ∪ B) ≤ P(A) + P(B) ………….(iii)
From (i), (ii) and (iii).
P(A ∩ B) ≤ P(A) ≤ P(A ∪ B) ≤ P(A) + P(B).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 3.
In a box contaIning 15 bulbs, 5 are defective. If 5 bulbs are selected at random from the box, find the probabflky of the event, that
i) none of them is defective.
ii) only one of theni is defective.
iii) atleast omie of ihietim is defective.
Solution:
Total number of bulbs = 15
Defective bulbs = 5
Number of good bulbs = 10
n(S) = 15C5 = 3003.

i) None of theni is defective:
If E is the event of selecting all good bulbs from 10,
= 10C2 = 252
∴ P(E) = \(\frac{n(E)}{n(S)}=\frac{252}{3003}=\frac{12}{143}\).

ii) Only one of them is defective:
So selecting one defective from 5 and 4 good bulbs from 10.
n(E1) = 10C4 . 5C1 = 1050
∴ P(E1) = \(\frac{\mathrm{n}\left(\mathrm{E}_1\right)}{\mathrm{n}(\mathrm{S})}=\frac{1050}{3003}=\frac{50}{143}\)

iii) Atleast one of them is defective:
P(E) = 1 – \(\frac{12}{143}\)
= \(\frac{131}{143}\).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 4.
A and B are seeldng admission into IIT. If the probability for A to be selected is 0.5 and that both to be selected is 0.3, then it is possible that, the probability of B to be selected is 0.9?
Solution:
Given that P(A) = 0.5; P (A ∩ B) = 0.3
and P(A ∪ B) ≤ 1
⇒ P (A) + P(B ) – P (A ∩ B) ≤ 1
⇒ 0.5 + P(B) – 0.3 ≤ 1
⇒ P( B) + 0.2 ≤ 1
⇒ P(B) ≤ 1 – 0.2 = 0.8
∴P (B) = 0.9 is not possible.

Question 5.
The probability for a contractor to get a road contract is \(\frac{2}{3}\) and to get a building contract is \(\frac{5}{9}\). The probability to get atleast one contract is \(\frac{4}{5}\). Find the probability that he gets both the contracts.
Solution:
Let A be the event that a contractor gets road contract and R he the event that a contractor gets a building contract.
Given P(A) = \(\frac{2}{3}\);
P(B) = \(\frac{5}{9}\)
P(A ∪ B) = \(\frac{4}{5}\)
We have to find P(A ∩ B).
From Addition theorem on probabilities, we have the probability that the contractor gets both the contracts is
P(A ∩ B) = P(A) + P(B) – P(A ∪ B)
= \(\frac{2}{3}+\frac{5}{9}-\frac{4}{5}=\frac{19}{45}\).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 6.
In a committee of 25 members, each member is proficient either in Mathematics or in Statistics or in both. If 19 of these are proficient in Mathematics, 16 in Statistics, find the probability that a person selected from the committee is proficient in both.
Solution:
Let A be the event that a person is proficient in Mathematics and B be the event that a person is proficient in Statistics.
n(S) = 25;
n(A) = 19;
n(B) = 16
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
P(A ∩ B) = P(A) + P(B) – P(A ∪ B)
= \(\frac{19}{25}+\frac{16}{25}\) – 1
= \(\frac{35-25}{25}=\frac{10}{25}=\frac{2}{5}\)
10 members arc proficient in Mathematics and Statistics.

Question 7.
A, B, C are three horses in a race. The probability of A to win the race is twice that of B and probability of B is twice that of C. What are the probablilties of A, B and C to win the race?
Solution:
Let probability of C to win the race be ‘x’
i.e.. P(C) = x
Given that P(B) = 2P(C) = 2x
and P(A) = 2P(B) = 2 × 2x = 4x
Sum of the probabilities is ‘1’.
x + 2x + 4x = 1
⇒ 7x = 1
⇒ x = \(\frac{1}{7}\)
∴ P(A) = 2(\(\frac{1}{7}\)) = \(\frac{2}{7}\)
and P(C) = x = \(\frac{1}{7}\).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 8.
A bag contains 12 two rupee coins, 7 one rupee coins and 4 half rupee coins. 1f three coins are selected at random, then find the probability that
i) the sum of three coins is maximum
ii) the sum of three is minimum
iii) each coin is of different value.
Solution:
Total number of coins 12 + 7 + 4 = 23 coins
n(S) = 23C3
i) The sum of the three coins is maximum when we select 3 two rupee coins from 12 coins in 12C3 ways.
∴ n(E) = 12C3
Probability that te sum of three coins is maximum.
P(E) = \(\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{{ }^{12} C_3}{{ }^{23} C_3}\)

ii) The sum of the three coins is minimum when we selecting 3 half rupee coins from 4 half a rupee coins which can be done in 4C3 ways.
∴ n(E) = 4C3
∴ Probability for the sum of three coins to be minimum P(E) = \(\frac{{ }^4 C_3}{{ }^{23} C_3}\)

iii) Three coins each of different value
n(E) = 12C1 . 7C1 . 4C1 and probability that the each coin has of different value = \(\frac{{ }^{12} C_1 \cdot{ }^7 C_1 \cdot{ }^4 C_1}{{ }^{23} C_3}\) ways.

Question 9.
The probabilities of three events A, B, C are such that P (A) = 0.3, P(B) = 0.4, P(C) = 0.8, P(A ∩ B) = 0.08, P(A ∩ C) = 0.28, P(A ∩ B ∩ C) = 0.09 and P(A ∩ B ∩ C) ≤ 0.75. Show that P(B ∩ C) lies in the interval [0.23, 0.48].
Solution:
Probability for any event is always less than or equal to ‘1’ and given that
P (A ∪ B ∪ C) ≥ 0.75
∴ 0.75 ≤ P(A ∪ B ∪ C) ≤ 1
⇒ 0.75 ≤ P(A) + P(B) + P(C) – P(A ∩ B) – P(B ∩ C) – P(C ∩ A) + P(A ∩ B ∩ C) ≤ 1
⇒ 0.75 ≤ 0.3 + 0.4 + 0.8 – 0.08 – P(B ∩ C) – 0.28 + 0.09 ≤ 1
⇒ 0.75 ≤ 1.23 – P(B ∩ C) ≤ 1
⇒ – 1.23 + 0.75 ≤ – P(B ∩ C) ≤ 1 – 1.23
⇒ – 0.48 ≤ – P(B ∩ C) ≤ – 0.23
⇒ 0.23 ≤ P(B ∩ C) ≤ 0.48
⇒ P(B ∩ C) ∈ [0.23, 0.48].

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 10.
The probabilities of three mutually exclusive events are respeclively given as \(\frac{1+3 p}{3}, \frac{1-\mathbf{p}}{4}, \frac{1-2 \mathbf{p}}{2}\). Prove that \(\frac{1}{3} \leq p \leq \frac{1}{2}\).
Solution:
Suppose A, B, C are exclusive events
such that P(A) = \(\frac{1+3 \mathrm{P}}{3}\)
P(B) = \(\frac{1-P}{4}\)
P(C) = \(\frac{1-2 P}{2}\)
We know that
0 ≤ P(A) ≤ 1
o ≤ \(\frac{1+3 \mathrm{P}}{3}\) ≤ 1
0 ≤ 1 + 3P ≤ 3
– 1 ≤ 3P ≤ 3 – 1
\(\frac{-1}{3} \leq P \leq \frac{2}{3}\) ……………(1)
0 ≤ P(B) ≤ 1
0 ≤ \(\frac{1-\mathrm{P}}{4}\) ≤ 4
0 ≤ 1 – P ≤ 4
– 1 ≤ – P ≤ 4 – 1
1 ≥ P ≥ – 3
– 3 ≤ P ≤ 1 …………(2)
0 ≤ P(C) ≤ 1
0 ≤ \(\frac{1-2 \mathrm{P}}{2}\) ≤ 1
0 ≤ 1 – 2P ≤ 2
– 1 ≤ – 2P ≤ 2 – 1
1 ≥ 2P ≥ – 1
\(\frac{1}{2} \geq \mathrm{P} \geq-\frac{1}{2}\)
\(\frac{-1}{2} \leq P \leq \frac{1}{2}\) ……….(3)
Since A, B, C are exclusive events,
0 ≤ P(A ∪ B ∪ C) ≤ 1
⇒ 0 ≤ P(A) + P(B) + P(C) ≤ 1
⇒ 0 ≤ \(\frac{4+12 P+3-3 P+6-12 P}{12}\) ≤ 1
⇒ 0 ≤ \(\frac{13-3 P}{12}\) ≤ 1
⇒ 0 ≤ 13 – 3p ≤ 12
⇒ – 13 ≤ – 3P ≤ 12 – 13
⇒ 13 ≥ 3P ≥ 1
⇒ \(\frac{13}{3} \geq \mathrm{P} \geq \frac{1}{3}\)
⇒ \(\frac{1}{3} \leq \mathrm{P} \leq \frac{13}{3}\) ……………(4)
Max.of \(\left\{\frac{-1}{3},-3, \frac{-1}{2}, \frac{1}{3}\right\}=\frac{1}{3}\)
Min.of \(\left\{\frac{2}{3}, 1, \frac{1}{2}, \frac{13}{3}\right\}=\frac{1}{2}\)
(1), (2), (3) and (4) holds if \(\frac{1}{3} \leq P \leq \frac{1}{2}\).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 11.
On a festival day, a man plans to visit 4 holy temples A, B, C, D in a random order. Find the probability that he visits
(i) A before B
(ii) A before B and B before C
Solution:
Given that 4 holy temples are A, B, C and D.
Number of ways to visit 4 holy tempies in 4P4 ways.
∴ n(S) = 4P4
= 4! = 24

i) A before B:

TS Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b) 1

ii) A before B and B before C:

TS Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b) 2

Question 12.
From the employees of a company, 5 persons are selected to represent them in the managing committee  lite company. The particulars of 5 persons are as follows :

NameSexAge in years
1. HarishM30
2. RohanM33
3. SheetalaF46
4. AlisF28
5. SalimM41

 

A person is selected at random front this group to act as a spokesperson. Find the probability that the spokesperson will be either male or above 35 years.
Solution:
Let ‘A’ be the event of selecting a male
n(A) = 3
Let ‘B’ be the event of selecting a person whose age is above 35.
n(B) = 2
n(S) = 5, n(A ∩ B) = 1
P(A ∩ B) = P(A) + P(B) – P(A ∩ B)
= \(\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}-\frac{n(A \cap B)}{n(S)}\)
= \(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}=\frac{4}{5}\).

TS Board Inter 2nd Year Maths 2A Solutions Chapter 9 Probability Ex 9(b)

Question 13.
Out of 100 Students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, find the probability that
(ï) you both enter the same section
(ii) you both enter the different sections.
Solution:
n(S) = 100C40
i) You both enter (lie saine seclion:
n(A) = 98C38 + 98C58
P(A) = \(\frac{n(A)}{n(S)}\)
= \(\frac{{ }^{98} C_{38}+{ }^{98} C_{58}}{{ }^{100} C_{40}}=\frac{17}{33}\)

ii) You both enter the different sections :
n(A) = 98C39 + 98C59
P(A) = \(\frac{n(A)}{n(S)}\)
= \(\frac{{ }^{98} C_{39}+{ }^{98} C_{59}}{{ }^{100} C_{40}}=\frac{16}{33}\).

TS 10th Class Maths Important Questions Chapter 10 Mensuration

These TS 10th Class Maths Chapter Wise Important Questions Chapter 10 Mensuration given here will help you to solve different types of questions.

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Previous Exams Questions

Question 1.
Find the volume and total surface area of a hemisphere whose radius is 35 cm ?
Solution:
Radius of the hemisphere (r) = 35 cm.
Volume of the hemisphere = \(\frac{2}{3}\) πr3
= \(\frac{2}{3}\) × \(\frac{22}{7}\) × 35 × 35 × 35
= \(\frac{269500}{3}\) cm3 = 89833 \(\frac{1}{3}\) cm3
Total surface area = 3πr2
= 3 × \(\frac{22}{7}\) × 35 × 35 = 11550 cm2

Question 2.
The radius of a conical tent is 5m and its height is 12m. Calculate the length of the canvas used in making the tent if width of canvas is 2 cm.
Solution:
Radius of the conical tent (r) = 5 m.
Height of the tent (h) = 12 m.
Slant height of the cone
(l) = \(\sqrt{r^2+h^2}\)
= \(\sqrt{5^2+12^2}\)
= \(\sqrt{25+144}\) = \(169\) = 13 m
Now, surface area of the tent = πrl
= \(\frac{22}{7}\) × 5 × 13 = \(\frac{1430}{7}\) m
Area of the canvas used = \(\frac{1430}{7}\) m
It is given that the width of the canvas = 2 m
Length of the canvas used = \(\frac{\text { Area }}{\text { Width }}\)
= \(\frac{1430}{7}\) × \(\frac{1}{2}\) = 102.14 m

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 3.
If a cylinder and cone are of the same radius and height, then how many cones full of milk can fill the cylinder ? Answer with reasons. (Mar. ’15 (T.S)
Solution:
Volume of the cylinder is three times to the volume of the cone if they have same radius and height.

Question 4.
A medicine capsule is in the shape of a cylinder with two hemispheres stock to each of its ends. If the length of cylinder) part is 14mm and the diameter of hemi-sphere is 6 mm, then find the volume of medicine capsule. (Mar. ’15 (T.S)
Solution:
Volume of the capsule.
TS 10th Class Maths Important Questions Chapter 10 Mensuration 5
= volume of the cylinder + 2x volume of the hemisphere
= πr2h + 2 × (\(\frac{2}{3}\) πr3)
= \(\frac{22}{7}\) × 32 × 14 + \(\frac{4}{3}\) × \(\frac{22}{7}\) × 32
= \(\frac{22}{7}\) × 16
= 16π cubic millimetre.

Question 5.
State the relation between r and l (slant height) of a cone.
Solution:
Slant height (l) = \(\sqrt{r^2+h^2}\)

Question 6.
The radius of a spherical balloon in creases from 7 cm to 14 cm as air is pumped into it. Find the ratio of volumes of balloon before and after pumping thef air. (Mar. ’15 (T.S.))
Solution:
Radius of radius = r1 : r2 = 7 : 14 = 1 : 2
Ratio of volumes = r13 : r23 = 13 : 23 = 1 : 8

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 7.
A conical solid block is exactly fitted inside the cubical box of side ‘a’ then the volume of conical solid block is \(\frac{4}{3}\)πa3. Is this statement true. Justify. (Mar. ’16 (T.S))
Solution:
The cone is exactly fitted inside the cubical box.
TS 10th Class Maths Important Questions Chapter 10 Mensuration 6
So height of cone = a = side of cube a
Radius of cone = \(\frac{\mathrm{a}}{2}\)
Volume of cone = \(\frac{1}{3}\)πr2 h
= \(\frac{1}{3}\) . π . \(\left(\frac{\mathrm{a}}{2}\right)^2\) . a = \(\frac{1}{3}\) . π . \(\frac{\mathrm{a}^2}{4}\) . a
= \(\frac{1}{3} \frac{\pi a^3}{4}\) = \(\frac{1}{12}\) πa3
But to say \(\frac{4}{3}\) πa3 is not correct.

Question 8.
If the surface area of a hemisphere is ‘S’ then express ‘r’ interms of ‘s’. (Mar. ’16 (T.S))
Solution:
The surface area of a hemisphere = 2πr2 = S
⇒ r2 = \(\frac{S}{2 \pi}\)
∴ r = \(\sqrt{\frac{5}{2 \pi}}\)

Question 9.
Find the volume and surface area of a sphere of radius 42 cm.
Solution:
Radius of the sphere (r) = 42 cm
Curved surface area (A) = 4πr2
= 4 × \(\frac{22}{7}\) × 42 × 42 = 22,176 cm2
Volume of sphere V = \(\frac{4}{3}\) πr2
= \(\frac{4}{3}\) × \(\frac{22}{7}\) × 42 × 42 × 42
= 3,10,464 cm2

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 10.
A solid metallic ball of volume 64 cm3 is melted and made into a solid cube. Find the side of solid cube. (Mar. ’16 (T.S))
Solution:
Volume of solid metal = volume of cube
= 64 cm3
∴ Volume of cube = s3 = 64 cm
S = \(\sqrt[3]{64}\) = 4 cm
So side of the cube = 4 cm

Question 11.
DWACRA is supplied cuboidal shaped wax block with measurements 88 cm x 42 cm x 35 cm. From this how many number of cylinderical candles of 2.8 cm diametre and 8 cm of height can be prepared ? (Mar. ’16 (T.S))
Solution:
Shape of wax block = cuboid
Its length (l) = 88 cm
breath (b) =42 cm
height (h) = 35 cm
Then the volume of wax present in block
= lbh = 88 × 42 × 35 cm3 ………….. (1)
Shape of candle = cylinder
Diameter of candle = (d) = 2.8 cm
⇒ radius = r = \(\frac{2.8}{2}\) = 1.4 cm
height (h) = 8 cm
Volume of wax required to make one candle
V = πr2h
= \(\frac{22}{7}\) × 1.4 × 1.4 × 8 cm3
∴ Total number of candles that can be
Total volume of block made = \(\frac{\text { Total volume of block }}{\text { Volume of each candle }}\)
= \(\frac{88 \times 42 \times 35}{\frac{22}{7} \times 1.4 \times 1.4 \times 8}\) = 2625
So, 2625 candles can be made with given measurements.

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Additional Questions

Question 1.
A company wants to manufacture 500 hemi-spherical basins from a copper sheet. If the radius of basin is 14 cm, find the area of copper sheet to manufacture the above hemi-spherical basins.
Solution:
Radius of the hemi-spherical basin = r = 14 cm
Surface area of hemi-spherical basin = 2πr2
= 2 × \(\frac{22}{7}\) × 14 × 14
= 1232 cm2
Hence, area of the copper sheet required for one basin = 1232 cm2
∴ Total area of copper sheet required for 500 basins
= 1232 × 500
= 616000 cm2
= 61.6 m2

Question 2.
A toy is in the form of right circular cone whose base radius 5 cm and height is 12cm. Find the area of sheet required to make 10 such toys.
Solution:
Radius of the toy = r = 5 cm
Height of the toy = h = 12 cm
Slant height of the toy = l = \(\sqrt{r^2+h^2}\)
= \(\sqrt{5^2+12^2}\)
= \(\sqrt{25+144}\)
= \(\sqrt{169}\)
= 13 cm
Lateral surface area of the toy = πrl
L.S.A = \(\frac{22}{7}\) × 5 × 13 = 204.28 cm2
∴ Area of the sheet required for 10 caps
= 10 204.28 = 2041.8 cm2

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 3.
The shape of solid iron rod is a cylindrical. Its height is 20cm and base diameter is 14 cm. Then find the total volume of 60 such rods.
Solution:
Diameter of the cylinder = d = 14 cm
∴ Radius of the base = r = \(\frac{\mathrm{d}}{2}\) = \(\frac{14}{2}\) = 7 cm
Height of the cylinder = h = 20 cm.
Volume of the cylinder = v = πr2h
= \(\frac{22}{7}\) × 7 × 7 × 20
= 3.080 cm3
∴ Total volume of 60 rods = 60 × 3080
= 1,84,800 cm3

Question 4.
A heap of rice is in the form of a cone of diameter 10 m and height 12m. Find its volume. How much Canvas cloth is required to cover the heap ?
Solution:
Diameter of the heap = d = 10 m
∴ Radius = r = \(\frac{\mathrm{d}}{2}\) = \(\frac{10}{2}\) = 5 m
Height of the cone = h = 12 cm
Slant height = l = \(\sqrt{r^2+h^2}\)
= \(\sqrt{5^2+12^2}\)
= \(\sqrt{25+144}\)
= \(\sqrt{169}\)
= 13 cm
Volume of the heap of rice = \(\frac{1}{3}\) πr2h
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 5 × 5 × 12
= 314.29 m3
Canvas cloth required to cover the cap = surface area of the conical heap = πrl
= \(\frac{22}{7}\) × 5 × 13
= 204.29 m2

Question 5.
The curved surface area of a cone is 5170 cm2 and its diameter is 84 cm. What is its slant height ?
Solution:
Diameter of the base of the cone = d = 84 cm
∴ Radius of the base = r = \(\frac{\mathrm{d}}{2}\) = \(\frac{84}{2}\) =42 cm
Curved surface area of the cone = πrl
By problem, πrl = 5170
\(\frac{22}{7}\) × 42 × l = 5170
⇒ l = \(\frac{5170 \times 7}{22 \times 42}\) = 39.16cm.
Hence, the slant height of the cone = 39.16 cm.

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 6.
A cone of height 32 cm and radius 8 cm is made up of modelling clay. A child reshapes it in the form of a sphere. Find the radius of the sphere.
Solution:
Given Height of the cone = h = 32 cm.
radius of the cone = r = 8 cm.
Let R = Radius of the sphere.
Since cone resphaes in the form of a sphere Volume of the cone = volume of the sphere
⇒ \(\frac{1}{3}\) πr2h = \(\frac{4}{3}\) πR3
⇒ \(\frac{1}{3}\) × \(\frac{22}{7}\) × 8 × 8 × 32 = \(\frac{4}{3}\) × \(\frac{22}{7}\) × R3
⇒ 8 × 8 × 8 = R3
⇒ R3 = 83
⇒ R = 8
Hence the radius of the sphere = R = 8 cm.

Question 7.
A metallic sphere of radius 4.9 cm is melted and recast in to the shape of a cylinder of radius 7 cm. Find the height of the cylinder.
Solution:
Let height of cylinder = h
Given radius of sphere = R = 4.9 cm
and Radius of cylinder = r = 7 cm
since sphere is melted in to the shape of a cylinder.
volume of the sphere = volume of the cylinder
⇒ \(\frac{4}{3}\) πR3 = πr2h
⇒ \(\frac{4}{3}\) × \(\frac{22}{7}\) × (4.9)3 = \(\frac{22}{7}\) × 72 × h
⇒ h = \(\frac{4}{3}\) x \(\frac{4.9 \times 4.9 \times 4.9}{7 \times 7}\)
h = 3.2 cm.
Hence the height of the cylinder = h = 3.20 cm

Question 8.
The rain water from a roof of 33m × 30m drains into a cylindrical vessel having diameter of base 4m and height 4.2m. If the vessel is just full, find the rain fall in cm.
Solution:
Dimensions of the roof = 33m × 30m
Diameter of cylindrical vessel = d = 4m
∴ Radius = r = \(\frac{\mathrm{d}}{2}\) = \(\frac{4}{2}\) = 2m
and height of vessel = h = 4.2 m. :
Let H = height of the rain fall
Now, volume of the rain fall = volume of the drained water in the cylindrical vessel
33 × 30 × H = πr2h
⇒ 33 × 30 × H = \(\frac{22}{7}\) × 2 × 2 × 4.2
⇒ H = \(\frac{22}{7}\) × \(\frac{2 \times 2 \times 4.2}{33 \times 30}\)
= 0.053 cm
H = 5.3 cm
∴ Rain fall = 5.3 cm

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 9.
The radii of the internal and external surfaces of a hollow spherical shell are 2 cm and 4 cm respectively. If it is melted and: recast in to a solid cylinder of radius 2\(\sqrt{2}\) cm. find the height of the cylinder.
Solution:
Given radii of the hollow spherical shell = 2 cm and 4 cm
Let r1 = 4 cm, r2 = 2 cm and h = height solid! cylinder and Radius of solid cylinder = r =1
2\(\sqrt{2}\) cm. since hollow spherical shell melt and recast in to solid cylinder.
∴ volume of the follow spherical shell = volume of the solid cylinder
⇒ \(\frac{4 \pi}{3}\) (r13 – r23) = π – r2h
⇒ \(\frac{4}{3}\) (r13 – r23) = r2h
⇒ \(\frac{4}{3}\) (43 – 23) = (2\(\sqrt{2}\))2h
⇒ \(\frac{4}{3}\) (64 – 8) = 4 × 2 × h
⇒ \(\frac{4}{3}\) × 56 = 8 × h
⇒ h = \(\frac{4}{3}\) × \(\frac{56}{8}\) = \(\frac{28}{3}\) cm
∴ Height of the cylinder = h = \(\frac{28}{3}\) cm

Question 10.
A cylindrical bucket, 36 cm high and with radius of base 16 cm is filled with rice. This bucket is emptied out on the ground and a conical heap of rice is formed. If the height of the comical heap is 27 cm. find the radius d slant height of the heap.
Solution:
Given height of cylindrical bucket = 36 cm = h
and radius = 16 cm = r
Let height of conical heap = 27cm = H
and Radius of conical heap = R
slant height of the heap = I
Since the rice is carried and emptied by cylindrical bucket to form a conical heap,
Volume of cylindrical bucket = volume of conical heap.
TS 10th Class Maths Important Questions Chapter 10 Mensuration 1
Hence, Radius of heap = R = 32 cm
and slant height of the heap = l = 41.86 m

Question 11.
Find the total surface area of a hemi-sphere of radius 2.8 cm.
Solution:
Given radius of hemi-sphere = 2.8 cm
= 3 × \(\frac{22}{7}\) × (2.8)2
= 3 × \(\frac{22}{7}\) × 2.8 × 2.8
= 73.92 cm2

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 12.
A cone of height 16 cm and radius of base 4 cm is made up modeling clay. A child u9 reshapes it into a sphere find the radius of the sphere.
Solution:
Given height of the cone = \(\frac{1}{3}\) πr2h
= \(\frac{1}{3}\) π × (4)2 × 16
= \(\frac{1}{3}\) π × 4 × 4 × 16
Since, the volume of the clay is in the form of the cone and the sphere remains the same, we have
volume of sphere = volume of the cone
\(\frac{4}{3}\) πr3 = \(\frac{1}{3}\) π × 4 × 4 × 16
r3 = \(\frac{1}{3}\) × 4 × 4 × 16 × \(\frac{3}{4}\)
r3 = 64 = 43
∴ r = 4
∴ The radius of the sphere = 4

Question 13.
A storage tank consists of a circular cylinder with a hemi-sphere stuck on either end. If the external diameter of the cylinder be 1.4 m and its length be 8 m find the cost of painting it on the out side at rate of ₹ 20 per m2.
Solution:
Total surface area of the tank
= 2 × C.S.A of the hemisphere +C.S.A of cylinder
TS 10th Class Maths Important Questions Chapter 10 Mensuration 2
Hemisphere :
Radius (r) = \(\frac{\text { diamater }}{2}\)
= \(\frac{1.4}{2}\) = 0.7 m
C.S.A of hemi-sphere = 2 πr2
= 2 × \(\frac{22}{7}\) × 0.7 × 0.7
= 3.08 m2
2 × C.S.A = 2 × 3.08 m2 = 6.16 m2
Cylinder : Radius (r) = \(\frac{\text { diamater }}{2}\) = \(\frac{1.4}{2}\) = 0.7 m
Height (h) = 8 m
C.S.A. of cylinder = 2πrh
= 2 × \(\frac{22}{7}\) × 0.7 × 8 = 35.2 m2
∴ Total surface area of the cylinder storage tank = 35.2 + 6.16 = 41.36 m2
cost of painting its surface area @ 20 per sq.m is = 41.36 × 20 = ₹ 827.2

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 14.
How many spherical balls can be made out of a solid cube of lead whose edge measures 44 cm and each ball being 4 cm in diameter.
Solution:
Side of lead cube = 44 cm
Radius of spherical balls = \(\frac{4}{2}\) cm = 2 cm
TS 10th Class Maths Important Questions Chapter 10 Mensuration 3
Now, volume of spherical ball = \(\frac{4}{3}\) πr3
= \(\frac{4}{3}\) × \(\frac{22}{7}\) × 23 cm3
= \(\frac{4}{3}\) × \(\frac{22}{7}\) × 8 cm3
Volume of x spherical balls = \(\frac{4}{3}\) × \(\frac{22}{7}\) × 8 × x cm3
It is clear that volume of x spherical balls = volume of lead cube.
⇒ \(\frac{4}{3}\) × \(\frac{22}{7}\) × 8 × x = 44 × 44 × 44
⇒ x = \(\frac{44 \times 44 \times 44 \times 3 \times 7}{4 \times 22 \times 8}\)
x = 2541
Hence, total number of spherical balls = 2541

Question 15.
Explain the terms in the formula
V = l × b × h
Solution:
Given V = l × b × h
when v = volume
l = length
b = breath
h = height

Question 16.
Self help group wants to manufacture Joker’s caps (conical caps) of 6 cm radius and 8 cm hight. If the available colour paper sheet is 1000 cm2 then how many caps can be manufactured from that paper.
Solution:
Radius of Joker’s cap = r = 6 cm
height of Joker’s cap = h = 8 cm
Now l = \(\sqrt{r^2+h^2}\) = \(\sqrt{6^2+8^2}\)
= \(\sqrt{36+64}\) = \(\sqrt{100}\) = 10 cm
Now, surface area of one cap = πrl
= \(\frac{22}{7}\) × 6 × 10 = 188.57 cm2
But area of available colour paper sheet = 1000 cm2
Number of caps Manufactured from that colour paper = \(\frac{\text { Area of colour paper sheet }}{\text { Surface area of are cap }}\)
= \(\frac{1000}{188.57}\) = 5.303 = 5

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 17.
A cone of height 24 cm and radius of base 6 cm is made up modelling clay. A child reshapes it into a sphere. Find the radius of the sphere.
Solution:
Volume of cone = \(\frac{1}{3}\) π × 6 × 6 × 24 cm3
If r is the radius of the sphere, then its volume is \(\frac{4}{3}\) πr3
Since the volume of clay in the form of the cone and the sphere remains the same, we have
\(\frac{4}{3}\) πr3 = \(\frac{1}{3}\) π × 6 × 6 × 24
r3 = 3 × 3 × 24 = 3 × 3 × 3 × 8
r3 = 33 × 23
r = 3 × 2 = 6
Therefore the radius of the sphere is 6 cm.

Question 18.
A rectangular park is to be designed. Its breadth is 3m less than its length. Its area is to be 4 square meters more than the area of park that has already been made in the shape of an isosceles triangle with base as the breadth of the rectangular park and altitude 12m. Find the length and breadth.
Solution:
Let the breadth of the rectangular park be x m.
So, its length = (x + 3) m.
Therefore, the area of the rectangular park
= x(x + 3)m2 = (x2 + 3x)m2.
Now, base of the isosceles triangle = x m.
TS 10th Class Maths Important Questions Chapter 10 Mensuration 4
Therefore, its area = \(\frac{1}{2}\) × x × 12
= 6x m2
According to our requirements,
x2 – 3x = 6x + 4
i.e., x2 – 3x – 4 = 0
Using the quadratic formula, we get
x = \(\frac{3 \pm \sqrt{25}}{2}\) = \(\frac{3+5}{2}\) = 4 or -1.
But x ≠ -1. Therefore, x = 4.
So, the breadth of the park = 4m and its length will be x + 3 = 4 + 3 = 7m.
Verification :
Area of rectangular park = 28 m2
Area of triangular park = 24 m2 = (28 – 4) m2.

TS 10th Class Maths Important Questions Chapter 10 Mensuration

Question 19.
To calculate the quantity of milk inside a bottle, we need to find out …………… [ ]
a) Area
b) Volume
c) Density
d) Total surface area

Question 20.
The height of right angle triangle is 7 cm less than the base, the length of the diagonal is 17cm, then the length of remaining two sides are …………. [ ]
a) 15cm, 8 cm
b) 12 cm, 5 cm
c) 24 cm, 17 cm
d) All above

TS Inter 2nd Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

TS Inter 2nd Year Economics Study Material 10th Lesson తెలంగాణ ఆర్థిక వ్యవస్థ

వ్యాసరూప సమాధాన ప్రశ్నలు:

ప్రశ్న 1.
తెలంగాణ రాష్ట్ర నిర్మితిపై వ్యాసం రాయండి.
జవాబు.
హైదరాబాద్ రాష్ట్రం నిజాం నవాబులచే రెండు శతాబ్దాలకు పైగా (1724-1948) పరిపాలించబడింది. రాష్ట్రానికి స్వంత కరెన్సీ, పరిపాలనా వ్యవస్థ రవాణా మరియు కమ్యూనికేషన్ వ్యవస్థ, స్వంత రైల్వే, పోస్టల్ వ్యవస్థ ఉండేది. ఉర్దూ భాష అధికార భాషగానే కాకుండా ఉర్దూలోనే విద్యాభ్యాసం జరిగేది.

భారత దేశానికి 15 ఆగస్టు, 1947 స్వాతంత్ర్యం వచ్చినపుడు, హైదరాబాద్ రాజ్యపాలకుడు మీర్ ఉస్మాన్ అలీఖాన్, ఏడవ నిజాం రాజు స్వతంత్రంగానే ఉంచాలనుకున్నాడు. కానీ అన్ని సంస్థానాలు, రాజరిక వ్యవస్థలు భారతదేశంలో కలవాలనుకున్నాయి. ఆ సమయం రాష్ట్రంలో అంతర్గత కలహాలు మొదలయ్యాయి. ముఖ్యంగా వ్యవసాయ కూలీలు ఫ్యూడల్ పాలనపై తిరుగుబాటు చేసారు.

తెలంగాణ సాయుధ పోరాటంగా ఈ సంఘటన పిలువబడింది. ఆ పరిస్థితులలో భారత ప్రభుత్వం “సాయుధ బలగాలతో” నిజాం రాజుపై ఒత్తిడి తెచ్చి భారత్లో కలవాలని కోరింది. చరిత్రలో పోలీస్ చర్యగా పిలవబడింది. ఈ ఘటనతో సెప్టెంబర్ 17, 1948 రోజున హైదరాబాద్ రాజ్య విలీనం జరిగింది. 1952వ సంవత్సరంలో సాధారణ ఎన్నికలు జరిగాయి. అందులో డా॥ బూర్గుల రామకృష్ణారావు ముఖ్యమంత్రిగా ప్రజా ప్రభుత్వం ఏర్పాటైంది.

మద్రాసు రాష్ట్రంలో చాలా కాలం భాగంగా ఉన్న ఆంధ్ర ప్రాంతం 1 అక్టోబరు, 1953న ఆంధ్ర రాష్ట్రంగా ఏర్పాటైంది. తెలంగాణ ప్రాంతం ఆంధ్ర రాష్ట్రంలో కలిసింది. ఆంధ్ర ప్రాంతంలో తెలంగాణ ప్రాంతం కలవడం వల్ల ఈ క్రింది ప్రయోజనాలు పొందవచ్చునని భావించారు.

  1. హైదరాబాద్ను కలుపుకుంటే రాజధాని సమస్య పరిష్కారమవుతుందని భావించారు.
  2. తీవ్ర ఆర్థిక ఇబ్బందులలో ఉన్న ఆంధ్ర రాష్ట్రానికి, మిగులు బడ్జెట్ నిధులు గల తెలంగాణ ఆదాయం ఉపయోగించుకొనుటకు
  3. కృష్ణా, గోదావరి నదులపై నియంత్రణ మొదలైనవి.
  4. ఆంధ్ర రాష్ట్ర ఏర్పాటు సమయంలో చేసుకొన్న వాగ్దానాలు, తెలంగాణ ప్రాంతానికి కల్పించిన రక్షణలు అమలు కాలేదు.

ఆ సమయంలో చేసుకొన్న ముఖ్య ఒప్పందాలు.

  1. 1956 నాటి పెద్ద మనుషుల ఒప్పందం.
  2. 1969లో అఖిలపక్ష ఒప్పందం.
  3. 1969లో 8 అంశాల ఫార్ములా, 1970లో 5 అంశాల ఫార్ములా.
  4. 972లో సుప్రీంకోర్టు ఇచ్చిన తీర్పు.
  5. ఆరుసూత్రాల పథకం.
  6. జీ.వో నెం. (G.O.No.) 610 గిర్ గ్లాని కమీషన్ రిపోర్టు.

పైన పేర్కొన్న అంశాలు అమలుకు నోచుకోకపోవడం వల్ల తెలంగాణ ప్రాంతం, సీమాంధ్ర ప్రాంతాలకంటే అన్ని రంగాలలో వెనుకబడిపోయింది. ఈ పరిస్థితులు తరచూ ఉద్యమాలు చెలరేగడానికి కారణాలైనాయి.

1969లో చెలరేగిన ప్రత్యేక రాష్ట్ర ఉద్యమం నిరంతరం కొనసాగుతూ 2009 నుంచి ప్రత్యేక తెలంగాణ రాష్ట్ర ఉద్యమం ప్రజా ఉద్యమంగా మారింది.

ఉద్యమం వివిధ రూపాలుగా సమ్మెలు, బండ్లు, రైలురోకో, జాతీయ రహదార్ల నిర్బంధం, విద్యార్థుల నిరసనలు, విద్యాసంస్థలు, విశ్వవిద్యాలయాల మూసివేత, సకల జనుల సమ్మెలో ప్రభుత్వ ఉద్యోగులు పాల్గొనడం, ఆర్.టి.సి., సింగరేణి కార్మికుల సమ్మెలు, ఆత్మహత్యలు, శ్రీ కల్వకుంట్ల చంద్రశేఖరరావు (ప్రస్తుత తెలంగాణ ముఖ్యమంత్రి) ఆమరణ నిరాహార దీక్షతో కేంద్ర ప్రభుత్వం తెలంగాణను 29వ రాష్ట్రంగా ప్రకటించింది.

జూన్ 2, 2014న ఆంధ్రప్రదేశ్ రెండు రాష్ట్రాలుగా విడిపోయింది. తెలంగాణలోని 10 జిల్లాలతో తెలంగాణ రాష్ట్ర ఏర్పాటు జరిగింది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 2.
స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి (GSDP) అనగానేమి ? తెలంగాణాలో స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి, తలసరి ఆదాయాల ధోరణిని వివరించండి.
జవాబు.
స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి లేదా రాష్ట్ర ఆదాయం అనేది రాష్ట్ర ఆర్థిక వృద్ధిని కొలవడానికి ముఖ్యమైన సూచిక. “రాష్ట్రంలో ఒక సంవత్సర కాలంలో ఉత్పత్తి అయిన మొత్తం వస్తువుల, సేవల విలువల మొత్తాని లెక్కించడాన్ని (without duplication) స్థూల రాష్ట్ర ప్రాంతీయాదాయం అని నిర్వచించవచ్చు.

ఆర్థిక గణాంక శాఖ సంచాలకులు రాష్ట్రంలో ఉత్పత్తి, ఆదాయ మదింపు పద్ధతుల ద్వారా స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి (GSDP) ని అంచనా వేస్తున్నారు.

తెలంగాణ ఆర్ధిక వ్యవస్థలో స్థూల రాష్ట్ర ప్రాంతీయ్పోత్తి ధోరణులు :
ఒక రాష్ట్ర ఆర్ధిక వ్యవస్థ పనితీరును స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తిలో వచ్చే వృద్ధి రేటు సూచిస్తుంది. స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి అధ్యయనం ద్వారా ఒక నిర్దిష్ట కాలంలో ఆర్థిక వ్యవస్థలో వివిధ రంగాల పని తీరును అంచనా వేయవచ్చు.

2011-12 నుంచి 2019-20 మధ్య కాలంలో తెలంగాణ స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి, భారత్ స్థూల దేశీయోత్పత్తి వార్షిక వృద్ధి రేట్ల ప్రస్తుత, తెలంగాణకు సంబంధించి, స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి 2011-12 నుండి 2019-20 మధ్య కాలంలో ప్రస్తుత ధరలో రూ. 3.59 లక్షల కోట్ల నుండి రూ. 9.69 లక్షల కోట్లకు పెరగగా, స్థిర ధరలలో రూ. 3.59 లక్షల కోట్ల నుంచి రూ.6.63 కోట్లకు పెరిగింది.

కాగా ఇదే కాలంలో భారత్లో ప్రస్తుత ధరల్లో స్థూల దేశీయోత్పత్తి రూ.87.36 లక్షల కోట్ల నుంచి రూ. 203.8 లక్షల కోట్లకు, స్థిర ధరల్లో రూ.87.36 లక్షల కోట్ల నుంచి రూ. 146.83 లక్షల కోట్లకు పెరిగింది.

ఇక వార్షిక వృద్ధి రేట్లకు సంబంధించి ప్రస్తుత ధరలలో తెలంగాణలో స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి వృద్ధి రేటు 2011-12లో 11.7 నుంచి 2018-19 నాటి 14.3 శాతం పెరగగా 2019-20లో 12.6 శాతంగా నమోదయింది. కాగా ఇదే కాలంలో భారత్ లో ఇది వరుసగా 13.8 శాతం, 11 శాతం, 7.5 శాతంగా నమోదయింది. 2011-12 నుంచి 2019-20 మధ్య కాలంలో 2012-13, 2013-14 సంవత్సరాలు మినహా తెలంగాణ రాష్ట్ర స్థూల ప్రాంతీయోత్పత్తి రేటు, భారత్ స్థూల దేశీయోత్పత్తి వృద్ధి రేటు కంటే ఎక్కువగా నమోదయింది.

2012-13 నుంచి 2019-20 మధ్య కాలంలో, స్థిర ధరలలో, తెలంగాణ స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి వార్షిక వృద్ధి రేటు 3 శాతం నుంచి 8.2 శాతానికి పెరగగా, భారత్ స్థూల దేశీయోత్పత్తి వార్షిక వృద్ధి రేటు 2012-13లో 5, 6 శాతం ఉండగా 2016-17 లో 8.3 శాతానికి పెరిగి 2019-20 నాదికి 5 శాతానికి పడిపోయింది.

2011-12 నుంచి 2019-20 మధ్య కాలంలో భారత దేశ స్థూల దేశీయోత్పత్తిలో తెలంగాణ రాష్ట్ర వాటా స్థిర, ప్రస్తుత ధరలలో 4.11 శాతం నుంచి 4.5 శాతం మధ్య ఉన్నది.

తెలంగాణలో భారతదేశంలో ప్రస్తుత ధరలలో తలసరి ఆదాయం :
నిర్దేశిత సంవత్సరంలో రాష్ట్ర నికర ప్రాంతీయోత్పత్తి విలువను రాష్ట్ర జనాభాచే భాగించడం ద్వారా రాష్ట్ర తలసరి ఆదాయాన్ని లెక్కిస్తారు.

తెలంగాణలో 2011-12 లో తలసరి ఆదాయం రూ. 91,121 ఉండగా అది 2019-20 (ముందస్తు అంచనా) నాటికి రూ. 2,28,216 కు పెరిగి 2011-12పై 150 శాతం వృద్ధిని సాధించింది. కాగా భారత్లో తలసరి ఆదాయం 2011-12లో రూ. 63,462 కాగా 2019-20 (ముందస్తు అంచనా) నాటికి రూ. 13,432 కి పెరిగి 2011-12పై 111 శాతం వృద్ధిని సాధించింది. ఈ విధంగా తెలంగాణలో తలసరి ఆదాయం భారత్ తలసరి ఆదాయం కంటే ఎక్కువ.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 3.
తెలంగాణ ఆర్థిక వ్యవస్థలో జోడించిన స్థూల రాష్ట్ర ఉత్పత్తి విలువ (GVSA) లో వివిధ రంగాల వాటాపై వ్యాసం వ్రాయండి.
జవాబు.
ఆర్థిక వ్యవస్థలో గల వివిధ రంగాలు ప్రదర్శించిన వృద్ధి రేట్లు ఆ వ్యవస్థ యొక్క వృద్ధి ధోరణిని తెలుపుతాయి. ఆర్థిక వ్యవస్థలో గల వివిధ రంగాలను 16 రంగాలుగా విభజించినప్పటికీ సులభంగా గ్రహించుట కొరకు వీటిని స్థూలంగా మూడు రంగాలుగా వర్గీకరిస్తారు.
అవి : ప్రాథమిక, ద్వితీయ, గౌణ రంగాలు. ఈ రంగాల వృద్ధి రేట్లను ప్రాథమిక ధరలలో జోడించిన స్థూల ఉత్పత్తి విలువ (GVA) తో సూచిస్తారు.

a) ప్రాథమిక రంగం :
ఈ రంగంలో పంటలు, పశుసంపద, అడవులు, మత్స్య పరిశ్రమ, గనులు మొదలైనవి.

b) ద్వితీయ రంగం :
ఇందులో తయారీ రంగం, గ్యాస్, నీటి సరఫరా, ఇతర అనుబంధ సేవలు మొదలైనవి.

c) గౌణ రంగం :
ఇందులో వ్యాపారం రిపేర్ సేవలు, హోటళ్ళు, రెస్టారెంటులు, రవాణా (రైల్వే రోడ్ వే, నౌకాయానం, విమానయానం మొ.||) నిలువ (storage), కమ్యూనికేషన్, బ్రాడ్కాస్టింగ్, ఆర్థిక సేవలు, స్థిరాస్థి రంగం, ప్రభుత్వ పాలన మొదలైనటువంటివి ఉంటాయి.

ఆర్థిక వ్యవస్థలో వివిధ రంగాల విశ్లేషణ ఆ వ్యవస్థలో ఆయా రంగాల పని తీరుని తెలుపుటకు, ఆర్థిక స్థితిగతుల అంచనాకు తోడ్పడుతుంది. అంతేగాక ప్రస్తుత సంవత్సరంలో ఆర్థికవ్యవస్థలో ఆయా రంగాలు ఏ విధమైన పనితీరును కనబరచాయో, రాబోయే కాలంలో ఏ విధంగా పనిచేయగలవో తెలుసుకొనుటకు వీలవుతుంది.

ప్రాథమిక రంగం వృద్ధి రేటు 2012-13లో 21.9 శాతం (స్థిర ధరలో 8.6 శాతం) నుంచి 2015-16 లో కేవలం 2.2 శాతానికి (స్థిర ధరలలో 58 శాతం) తగ్గగా 2016-17 నాటికి 17.1 శాతానికి పెరిగి తిరిగి 2019-20 (AE)లో 15.8 శాతానికి (స్థిర ధరలలో 10.7 శాతం) తగ్గింది.

ఈ విధంగా ప్రాథమిక రంగంలో మిశ్రమ వార్షిక సగటు వృద్ధి రేట్లు నమోదగుటను గమనించవచ్చు. 2012-13, 2014-15 సంవత్సరాలలో ద్వితీయ రంగం రుణాత్మక వృద్ధి రేటును చవిచూడగా 2015-16 లో అత్యధిక వృద్ధి రేటు అనగా 20.3 శాతం (స్థిర ధరలలో 21.4 శాతం) ను నమోదు చేసుకొన్నది.

2019-20 (AE) ప్రకారం ఈ రంగంలో 5.3 శాతం వృద్ధిరేటు నమోదయింది. 2012-13 నుంచి 2019-20 మధ్య కాలంలో గౌణ రంగపు వృద్ధి రేటు 18.4 శాతం నుంచి 14.1 శాతం (స్థిర ధరలలో 8.4 శాతం నుంచి 9.6 శాతం) మధ్య కొనసాగింది. మొత్తానికి తెలంగాణ రాష్ట్ర ఆర్థిక వ్యవస్థలో ప్రస్తుత, స్థిర ధరలలో జోడించిన స్థూల రాష్ట్ర ఉత్పత్తి విలువ వృద్ధి రేటులో మిశ్రమ ధోరణిని చూడవచ్చు.

జోడించిన స్థూల రాష్ట్ర ఉత్పత్తి విలువ (GSVA) లో వివిధ రంగాల వాటా :
GSVA లో గౌణ రంగం లేదా సేవల రంగం వాటా 2011-12లో 52.8 శాతం నుంచి 2019-20 (AE) నాటికి 65.2 శాతానికి పెరగగా, ప్రాథమిక రంగం లేదా వ్యవసాయ రంగం దాని అనుబంధ రంగాల వాటా ఇదే కాలంలో 19.6 శాతం నుంచి 18.6 శాతానికి తగ్గగా, ద్వితీయ రంగం లేదా పారిశ్రామిక రంగం వాటా 27.6 శాతం నుంచి 16.2 శాతానికి తగ్గింది. తెలంగాణ రాష్ట్రపు GSVAలో ప్రాథమిక, ద్వితీయ రంగాల వాటా అస్థిర రూపంలో ఉండగా, గౌణ రంగం లేదా సేవల రంగం వాటా స్థిరంగా ఉండటాన్ని గమనించవచ్చు.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 4.
తెలంగాణ రాష్ట్ర జనభా తీరుతెన్నులను విశదీకరించండి.
జవాబు.
ఒక రాష్ట్ర ఆర్థిక వ్యవస్థ అభివృద్ధి ఆ వ్యవస్థలో లభ్యమవుతున్న వనరులపై ఆధారపడి ఉంటుంది. మానవ వనరులు ఉంటే, సహజ వనరులను అభిలషణీయంగా, సమర్థవంతంగా వినియోగపరిచి, రాష్ట్ర ప్రగతికి, అధిక ఉత్పత్తికి కారకులవుతారు. నాణ్యమైన జనాభాతో పాటు మూలధన కల్పన, సాంకేతిక పరమైన మార్పులు ఆర్థిక వ్యవస్థకు చలనత్వాలను కలిగిస్తుంది.

2011 జనాభా లెక్కల ప్రకారం తెలంగాణ జనాభా దాదాపు 42%గా నమోదయింది. భారతదేశమొత్తం భౌగోళిక వైశాల్యంలో తెలంగాణ 3.5% విస్తీర్ణం కల్గి ఉంది. రంగారెడ్డి జిల్లా జనాభాలో అత్యధికంగా 52.97 లక్షల మంది ఉండగా, నిజామాబాద్ జిల్లా జనాభాలో 25.51 లక్షల మందితో చివరి భాగాన ఉంది.

జనసాంద్రత :
ప్రతి చదరపు కిలోమీటరులో నివసించే జనాభాను జనసాంద్రత అంటారు. ఈ జనసాంద్రత జనాభా పెరుగుదల రేటును బట్టి మారుతూ ఉంటుంది. భారతదేశ మొత్తం జనసాంద్రతతో పోలిస్తే తెలంగాణలో జనసాంద్రత పెరుగుదల తక్కువగా ఉంది.

హైదరాబాద్ జిల్లా రాష్ట్ర రాజధాని నగరం కాబట్టి అధిక జనసాంద్రతను కల్గి ఉండి చదరపు కిలోమీటరుకు 18,172 మంది నివసిస్తున్నారు. 2001-2011 జనాభా లెక్కల ప్రకారం తెలంగాణలో జనాభా వృద్ధి రేటు 1.4% భారతదేశ జనాభా వృద్ధి రేటు 1.84% కంటే తక్కువ.

పిల్లల జనాభా :
0-6 సం॥లోపు వారిని పిల్లలు అంటారు. తెలంగాణలో పిల్లల జనాభా శాతం 2001లో 14.2% నుంచి 2011లో 10.5% తగ్గింది. ఈ తగ్గుదలకు కారణం పెరుగుతున్న అక్షరాస్యత, అధిక ఆదాయాలకు తోడు కుటుంబ నియంత్రణ పద్ధతులు అవలంబించడం. అన్ని జిల్లాలలో పిల్లల జనాభా శాతం రాష్ట్ర సగటుకు దగ్గరగా 10.5% గా ఉన్నది. ఒక మహబూబ్ నగర్ జిల్లాలో మాత్రం పిల్లల జనాభా 17.4% గా ఉంది.

కుటుంబ పరిమాణం, ఎస్.సి. & ఎస్.టి. జనాభాలో స్త్రీ, పురుషుల నిష్పత్తి :
జనాభా లెక్కల ప్రకారం కొంతమంది వ్యక్తులు `ఒక దగ్గర కలిసి జీవిస్తూ ఒకే వంటగదిని వాడుకోవడాన్ని కుటుంబం అంటారు. మొత్తం జనాభాను గృహాల సంఖ్యచే భాగించగా కుటుంబ పరిమాణం వస్తుంది. తెలంగాణలో సగటు కుటుంబ పరిమాణం 42% గా ఉంది.

ఎస్.సి/ఎస్.టి. జనాభా :
2011 జనాభా లెక్కల ప్రకారం షెడ్యూల్ కులాల (ఎస్.సి.) జనాభా మొత్తం రాష్ట్ర జనాభాలో 15.44% ఉంది. అదే విధంగా షెడ్యూల్ తెగల (ఎస్.టి.) జనాభా మొత్తం రాష్ట్ర జనాభాలో 9.34% ఉంది. .2011 జనాభా లెక్కల ప్రకారం ఎస్.సి. జనాభా మొత్తం జనాభాలో 54,32,650 మంది ఉన్నారు.

ఎస్.టి. జనాభా 32,86,928 మంది. ఎస్.సి. జనాభా అత్యధిక శాతం కరీంనగర్ జిల్లాలో 18-80%గా నమోదయ్యారు. అత్యల్పం హైదరాబాద్ 6.29%. ఎస్.టి. జనాభా ఖమ్మం జిల్లాలో 27.37%గా ఉంది. అత్యల్పం హైదరాబాద్లో 1.24%గా ఉంది. పట్టణాల కంటే గ్రామాలలోనే అధిక జనాభా వృద్ధి నమోదయింది.

స్త్రీ-పురుష నిష్పత్తి :
1000 మంది పురుషులకు స్త్రీల సంఖ్య ఆధారంగా స్త్రీ, పురుష నిష్పత్తి నిర్ణయించబడుతుంది. 2011 జనాభా లెక్కల ప్రకారం తెలంగాణలో ప్రతి 1,000 మంది పురుషులకు 990 మంది స్త్రీల అనుపాతం ఉంది.

మానవ అభివృద్ధి సూచి :
ఇది మూడు అంశాల వారిగా రూపొందించారు.

  1. పుట్టిన సమయంలో ఆయుఃప్రమాణం
  2. శిశుమరణాల రేటు
  3. అక్షరాస్యతా స్థాయి.

తెలంగాణలో మానవ అభివృద్ధి సూచిక (HDI):

TS Inter 2nd Year Economics Study Material 10th Lesson తెలంగాణ ఆర్థిక వ్యవస్థ 1

వలసదారుల వాటా :
తెలంగాణలోని పట్టణ జనాభాలో అధిక పెరుగుదలకు ఆంధ్ర ఇతర రాష్ట్రాల నుండి వలసదారులే కారణం. 1961 నుంచి 2011 మధ్య కాలంలో తెలంగాణలో వలసదారుల జనాభా 62 లక్షలు. పట్టణ జనాభాలో రంగారెడ్డి జిల్లా మొదటి స్థానంలో నిలిచింది. 70% జనాభా పట్టణ వాసులే. దీనికి కారణం పట్టణాల అభివృద్ధి మరియు హైదరాబాద్ పరిసరాల అభివృద్ధి.

అక్షరాస్యత :
2011 జనాభా లెక్కల ప్రకారం తెలంగాణలో అక్షరాస్యత శాతం 66%.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 5.
తెలంగాణ రాష్ట్రంలో విద్య, ఆరోగ్య రంగాల స్థితిని విశదీకరించండి.
జవాబు.
తెలంగాణలో విద్య :
దేశంలో మానవ వనరులు, ఆర్థికాభివృద్ధి బలోపేతం కావడానికి విద్యను ప్రధాన సాధనంగా భావించాలి. ఉత్పాదక శ్రామిక శక్తిని పెంపొందించడంలో విద్య కీలక పాత్ర పోషిస్తుంది. భారత రాజ్యాంగంలోని 45 వ నిబంధన ప్రకారం 6 నుంచి 14 సంవత్సరాల మధ్య వయస్సు గల బాలబాలికలకు ఉచిత, నిర్బంధ విద్యను అందించడం రాష్ట్రాల బాధ్యత.

తెలంగాణలో అక్షరాస్యత రేటు :
2011 జనాభా లెక్కల ప్రకారం తెలంగాణలో అక్షరాస్యత రేటు 66.54 శాతం. అయితే పట్టణ-గ్రామీణ, అంతర్ జిల్లా, వయస్సు వారీ జనాభా, స్త్రీ-పురుషులు, సామాజిక వర్గాల పరంగా అక్షరాస్యత రేటులో తేడాలున్నాయి. రాష్ట్రంలో విద్యా రంగం స్థితి :

a) నమోదు(Enrollment) :
2017-18 సంవత్సరంలో అన్ని పాఠశాలలు కలిపి 58.71 లక్షల విద్యార్థులు నమోదు చేసుకొన్నారు. ఇందులో 53 శాతం ప్రైవేటు పాఠశాలల నమోదు కాగా మిగితా 47 శాతం ప్రభుత్వ పాఠశాలల నమోదు.

b) స్థూల నమోదు నిష్పత్తి (Gross Enrollment Ration-GER) :
స్థూల నమోదు నిష్పత్తి (GER) విశ్వవిద్యాలయాలు, కళాశాలలు, పాఠశాలలో విద్యార్థుల నమోదు సంఖ్యను నిర్ణయిస్తుంది. GER 2017-18లో ప్రాథమిక పాఠశాలలో బాలురు – 98.76 శాతం, బాలికలు -. 98.05 శాతం కాగా ఉచ్ఛతర ప్రాథమిక పాఠశాలలో బాలురు – 87.32 శాతం, బాలికలు 88.4 శాతం.

c) విద్యార్థి – ఉపాధ్యాయ నిష్పత్తి (Pupil – Teacher Ratio – PTR) :
ఇది ఒక విద్యా సంవత్సరంలో ప్రత్యేక విద్యా స్థాయికి సంబంధించి ఎంత మంది విద్యార్థులకు ఒక ఉపాధ్యాయుడు ఉంటాడనే విషయాన్ని తెలుపుతుంది. PTR, 2018-19లో రాష్ట్రంలో ప్రాథమిక స్థాయిలో 18.90, ఉచ్ఛతర ప్రాథమిక స్థాయి 14.12, సెకండరీ స్థాయిలో 17.85 గా ఉంది. రాష్ట్రం మొత్తానికి 2018-19లో PTR 17.67.

పాఠశాల విద్య :
i) సమగ్ర శిక్షా అభియాన్:
గతంలో కేంద్ర ప్రభుత్వ ప్రాయోజిత పథకాలైన

  1. సర్వ శిక్షా అభియాన్ (SSA) సార్వత్రిక ప్రాథమిక విద్యను అమలు పరుస్తూండగా
  2. రాష్ట్రీయ మాధ్యమిక శిక్షా అభియాన్ (RMSA) సెకండరీ విద్యలో సామీప్యత (acess), ప్రమాణం (quality) లో పెంపుదలకు అమలు చేసింది.

ii) కస్తూర్బా గాంధీ బాలికా విద్యాలయం :
వీటిని 2004-05 లో రెసిడెన్షియల్ పాఠశాల సౌకర్యం కల్పించే ఉద్దేశంతో నెలకొల్పారు. నీటిలో ప్రవేశానికి అర్హతలు : SC, ST, BC, మైనారిటీ వర్గాలకు సంబంధించిన

  1. VI నుంచి VII తరగతులు వారికి,
  2. అనాధలు,
  3. బడి మానేసిన ఒంటరి తల్లి/తండ్రి కలిగిన విద్యార్థులు

iii) ఆదర్శ పాఠశాలలు :
194 ఆదర్శ పాఠశాలలు రాష్ట్రంలో 2013-14లో స్థాపించబడ్డాయి. వీటిలో అధిక విద్యార్హతలున్న ఉపాధ్యాయులచే ఇంగ్లీషు మీడియంలో విద్యా బోధన జరుగుతుంది. ఈ వథకం రద్దయినందువలన తెలంగాణ ప్రభుత్వం వీటి బాధ్యత తీసుకొని 2015-16 నుంచి వీటిని కొనసాగిస్తున్నది.

ఇంటర్మీడియట్ విద్య :
ప్రస్తుతం రాష్ట్రంలో 2,558 జూనియర్ కళాశాలలు ఉండగా వాటిలో విద్యార్థుల సంఖ్య 7.18 లక్షలు. 2,558 జూనియర్ కళాశాలలో, 404 ప్రభుత్వ, 4 వొకేషనల్, 41 ప్రైవేట్ ఎయిడెడ్, 1,583 ప్రైవేట్ మరియు ఇతర జూనియర్ కళాశాలలు కాగా 530 ఇతర ప్రభుత్వ సంస్థలు. ఈ బోర్డు ఉపాధిని కల్పించేందుకు వీలయిన 23 వొకేషనల్ కోర్సులను ఇంటర్మీడియట్ స్థాయిలో ప్రవేశపెట్టింది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ఉన్నత విద్య:

a) కళాశాల విద్య :
కళాశాల విద్య డిపార్ట్ మెంట్ యొక్క ప్రధాన లక్ష్యం ఉన్నత విద్యలో సామీప్యత (access), సమానత (equality), నాణ్యత (quality) ను సాధించుట. ఇందుకోసం కేంద్ర ప్రభుత్వ ప్రాయోజిత పథకమైన రాష్ట్రీయ ఉచ్ఛతర శిక్షా అభియాన్ (RUSA) నుంచి నిధుల సమీకరణకు తెలంగాణ ప్రభుత్వం కృషి చేస్తున్నది.

b) డిగ్రీ ఆన్లైన్ సర్వీసెస్ తెలంగాణ (DOST) :
డిగ్రీ కళాశాలలో బి.ఎ/బి.కాం/బి.యస్సీ/బి.బి.ఎ వండి డీగ్రీ కోర్సులలో ప్రవేశాలను తెలంగాణ ప్రభుత్వం 2016 సంవత్సరం నుంచి DOST ద్వారా కల్పిస్తున్నది. 2018 – 19లో డిగ్రీ కళాశాలలో 2,00,472 మంది విద్యార్థులు ప్రవేశాన్ని పొందగా ఇందులో 42,688 విద్యార్థులు ప్రభుత్వ కళాశాలలో ప్రవేశాన్ని పొందారు.

c) సాంకేతిక విద్య :
సాంకేతిర విద్యా డైరెక్టరేట్ రాష్ట్రంలో పాలిటెక్నిక్, వృత్తి విద్యలను పర్యవేక్షిస్తుంది. ఇది ప్రభుత్వ, ప్రైవేటు, ఎయిడెడ్ రంగాలలలో ప్రవేశాలు, విద్యా బోధనను పర్యవేశిస్తుంది. ప్రస్తుతం రాష్ట్రంలో 820 డిప్లమో డిగ్రీలో యుక్తమైన కళాశాలలు 1,36,805 విద్యార్థులతో పనిచేస్తున్నాయి.

సాంఘిక సంక్షేమ విద్యా సంస్థలు :
SC, ST, BC, మైనారిటీ, వికలాంగ బాలబాలికలక సమీప ప్రాంతాలలో విద్యా సంస్థలు ఉండే విధంగా చూని సాంఘిక సమానత్వ సాధనకు ప్రభుత్వం సాంఘిక సంక్షేమ విద్యా సంస్థలను నెలకొల్పింది. ఈ సంస్థలు రెసిడెన్షియల్ రూపంలో ఉండి విద్యార్థులకు ఉచిత హాస్టల్ వసతితో బాటు పాఠ్యపుస్తరాల పంపిణీ చేస్తాయి.

A) షెడ్యూల్డ్ కులాల రెసిడెన్షియల్ పాఠశాలలు :
తెలంగాణ సాంఘిక సంక్షేమ రెసిడెన్నియల్ విద్యా సంస్థల సొసైటి (TSWREIS) రాష్ట్రంలో 269 రెసిడెన్షియల్ విద్యా సంస్థలను నడుపుచున్నది. ఇందులో 175 బాలికలకు సంబంధించినవి. వీటిలో 5వ తరగతి నుండి డిగ్రీ వరకు షెడ్యూల్డ్ కులాలకు చెందిన విద్యార్థులకు ప్రవేశం కలదు. ప్రస్తుతం 268 విద్యా సంస్థలు ఉండగా అందులో 134 తెలంగాణ ఏర్పడిన తరువాత ప్రారంభించబడ్డాయి.

B) షెడ్యూల్డ్ తెగల రెసిడెన్షియల్ పాఠశాలలు :
a) తెలంగాణ గిరిజన సంక్షేమ రెసిడెన్షియల్ విద్యా సంస్థల సొసైటీ (TTWRESIS) – గురుకులాలు :
రాష్ట్రంలో ఈ గురుకులాలు 175 ఉన్నాయి.

b) ఆశ్రమ పాఠశాలలు :
రాష్ట్రంలో ప్రస్తుతం 321 ఆశ్రమ పాఠశాలలు ఉన్నాయి.

c) ప్రభుత్వ ప్రాథమిక పాఠశాలలు :
గిరిజన సంక్షేమ శాఖ 1,427 ప్రాథమిక పాఠశాలలను నిర్వహిస్తున్నది.

C) వెనుకబడిన తరగతులు సంక్షేమ రెసిడెన్షియల్ పాఠశాలలు :
మహాత్మా జ్యోతిబా పూలే తెలంగాణ వెనకబడిన తరగతుల సంక్షేమ రెసిడెన్షియల్ సంస్థల సొసైటీ (M,JPTBCWREIS) వెనకబడిన తరగతులు, ఆర్థికంగా వెనకబడిన తరగతుల వారికి విద్యను అందించుటకు స్థాపించారు.

ఒక రెసిడెన్షియల్ డిగ్రీ కళాశాలను నడుపుతున్నది. ఈ విద్యా సంస్థలలో దాదాపు 99,360 విద్యార్థులు విద్యను అభ్యసిస్తున్నారు.

D) మైనారిటీ రెసిడెన్షియల్ విద్యా సంస్థలు :
మైనారిటీ వర్గాలకు చెందిన బాలబాలికలకు అధిక నాణ్యతతో కూడిన విద్యను అందించుటకు రాష్ట్ర ప్రభుత్వం తెలంగాణ మైనారిటీల రెసిడెన్షియల్ విద్యా సంస్థల సొసైటీ (TMREIS) ని స్థాపించింది. ప్రస్తుతం రాష్ట్రంలో 216 మైనారిటీ విద్యా సంస్థలు 12 కళాశాలలతో కలిపి 79,424 విద్యార్థులకు విద్యను కల్పిస్తున్నాయి.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

II. తెలంగాణలో ఆరోగ్య రంగం :
‘అందరికీ ఆరోగ్యం’ అనే ప్రపంచ ఆరోగ్య సంస్థ (WHO) లక్ష్యాన్ని చేరుకోవడానికి తెలంగాణ ప్రభుత్వం వివిధ కార్యక్రమాలను చేపట్టింది. జాతీయ ప్రసూతి లబ్ది పథకం (National Maternity Benefit Programme), సమగ్ర శిశు అభివృద్ధి పథకం, పిల్లల కోసం బాలికా సమృద్ధి యోజన పథకం, పునరుత్పత్తి కలిగిన మహిళలకు సప్లిమెంటరీ న్యూట్రీషన్ పథకాన్ని అమలు చేస్తున్నది.

‘సామాజిక, ఆర్థిక దృక్పథం 2020’ ప్రకారం తెలంగాణ రాష్ట్రంలో 4,797 ఆరోగ్య ఉప కేంద్రాలు, 633 ప్రాథమిక ఆరోగ్య కేంద్రాలు, 249 పట్టణ ప్రాథమిక ఆరోగ్య కేంద్రాలు, 90 కమ్యూనిటీ ఆరోగ్య కేంద్రాలు, 19 ఏరియా ఆసుపత్రులు, 29 జిల్లా కేంద్ర ఆసుపత్రులు, 9 వైద్య కళాశాల ఆసుపత్రులు, 12 స్పెషాలిటీ ఆసుపత్రులు, 2 సూపర్ స్పెషాలిటీ ఆసుపత్రులు ఉన్నాయి.

ఆరోగ్య రంగంలో తెలంగాణ ప్రభుత్వం అమలు పరుస్తున్న పథకాలు : రాష్ట్రావతరణ అనంతరం తెలంగాణ ప్రభుత్వం ఆరోగ్య రంగంలో అనేక పథకాలను రూపొందించి అమలు పరుస్తున్నది. అందులో ముఖ్యమైనవి.

a) కంటి వెలుగు :
సామాన్యంగా ప్రజలు ప్రత్యేకించి మహిళలు, వృద్ధులు కంటి సమస్యలను వాయిదా వేయడం లేదా ఆ సమస్యలను కొనసాగిస్తూనే జీవనాన్ని గడుపుతుంటారు. ఈ సమస్య నివారణ కోసమే తెలంగాణ ప్రభుత్వం కంటి వెలుగు పథకాన్ని రూపొందించి అమలుపరుస్తున్నది.

b) బస్తీ దవాఖాన :
పట్టణ ప్రాంతాలలో ప్రామాణికతతో కూడిన ఆరోగ్య సేవలు అందించుటకు బస్తీ దవాఖానాలు స్థాపించారు. ప్రతి బస్తీ దవాఖాన 6,000 నుండి 10,000 జనాభా ఉన్న ప్రాంతాలకు సేవలందిస్తుంది. పట్టణ మురికినాడలలో వీటిని స్థాపిస్తారు. రాష్ట్రంలో 104 బస్తీ దవాఖానాలు పనిచేస్తున్నాయి.

c) ఆరోగ్య, వెల్నెస్ కేంద్రాలు :
ఇవి సమగ్ర ఆరోగ్య సేవలతో బాటు ప్రసూతి, చిన్న పిల్లల ఆరోగ్య రక్షణ సేవలను అందిస్తున్నాయి. వైద్య సేవలు, అవసరమైన ఔషధాలను ఇవి ఉచితంగా పంపిణీ చేస్తాయి. రాష్ట్రంలో 636 ప్రాథమిక ఆరోగ్య కేంద్రాలు, 86 ఉపకేంద్రాలు, 104 బస్తీ దవాఖానాలు, 227 పట్టణ ప్రాథమిక ఆరోగ్య కేంద్రాలు ఆరోగ్య వెల్నెస్ కేంద్రాలుగా పనిచేస్తున్నాయి.

d) తెలంగాణ వైద్య విధాన పరిషత్ (TVVP) ఆసుపత్రులు :
తెలంగాణ వైద్య విధాన పరిషత్ ఆధ్వర్యంలో 107 TVVP ఆసుపత్రులు పనిచేస్తున్నాయి. ఇవి ప్రసూతి, చిన్న పిల్లల ఆరోగ్య రక్షణ సేవలు, సాధారణ వైద్య సేవలు, సర్జరీలు, ఆప్తమాలజీ, పీడియాట్రిక్స్, ఆర్థోపెడిక్స్, డెర్మటాలజీ, ENT మొదలైన సేవలను అందిస్తాయి.

e) ఆయుష్ (ఆయుర్వేద, యోగ, నాచురోపతి, యునాని, హోమియోపతి) :
తెలంగాణ ప్రభుత్వం, జాతీయ ఆయుష్ మిషన్ సహకారంతో రాష్ట్రంలో ఆయుష్ పద్ధతి వైద్యాన్ని ప్రోత్సహిస్తున్నది. ఆయుష్ శాఖ కింద రాష్ట్రంలో 860 దవాఖానాలు పనిచేస్తున్నాయి.

f) ఆరోగ్య శ్రీ :
‘ఆరోగ్యశ్రీ ఆరోగ్య రక్షణ ట్రస్టు’ ద్వారా రాష్ట్రంలో ఆరోగ్యశ్రీ అనే ఒక ఏకైక పథకం ఆరోగ్య బీమాతో అమలవుతుంది. దీని ప్రధాన ఆశయం పేదరిక రేఖకు దిగువన ఉన్న వారికి వైద్య సేవలను అందించడం. ఈ పథకం ద్వారా పేద వారికి ఎంపిక చేయబడిన వ్యాధులకు నగదు రహిత సేవలు అందించబడతాయి.

g) KCR కిట్ :
ఈ పథకాన్ని తెలంగాణ ప్రభుత్వం జూన్ 2, 2017 న ప్రారంభించింది. పేదరికపు రేఖకు దిగువన ఉండి ప్రభుత్వ ఆరోగ్య కేంద్రాల నుంచి ఆరోగ్య సేవలు పొందే గర్భిణీ స్త్రీలకు, మగశిశువు జన్మిస్తే రూ. 12,000, ఆడశిశువు జన్మిస్తే రూ. 13,000 సహాయం అందించబడుతుంది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 6.
తెలంగాణ రాష్ట్రంలో నీటిపారుదల సౌకర్యాలను వివరించండి.
జవాబు.
తెలంగాణ ప్రత్యేక రాష్ట్రంగా అవతరించిన నాటి నుంచి నీటి పారుదల సౌకర్యాల అభివృద్ధి పట్ల తెలంగాణ ప్రభుత్వం అత్యధిక ప్రాధాన్యత నిచ్చుచున్నది. నీటిపారుదల సౌకర్యాలను విస్తరించుట ద్వారా రాష్ట్రంలో కనీసం ఒక కోటి ఎకరాలకు నీటి పారుదలను దించాలనే లక్ష్యాన్ని నిర్దేశించుకొన్నది. రాష్ట్రంలో నీటి పారుదల ప్రాజెక్టుల ప్రస్తుత పరిస్థితిని గురించి కింద వివరించవచ్చు.

a) డా॥ బి.ఆర్. అంబేద్కర్ ప్రాణహిత ప్రాజెక్టు:
కుమరం భీం జిల్లాలో గల తుమ్మిడిహట్టి గ్రామం, కౌటాల నుండలం, ప్రాంతంలో పెంగ, వార్ధా నదుల సంగమం వద్ద గల ప్రాణహిత నదిపై ఒక బ్యారేజిని నిర్మించి 20 TMC ల నీటిని మళ్లించి ఉత్తర ఆదిలాబాద్ జిల్లాలో గతంలో నిర్దేశించిన 56,500 ఎకరాలకు బదులు 2 లక్షల ఎకరాలకు నీటిని సమకూర్చడం.

b) కాళేశ్వరం ప్రాజెక్టు :
కాళేశ్వరం దగ్గరలో గల మేడిగడ్డ వద్ద గోదావరి నదిపై ఒక బ్యారేజీ, మేడిగడ్డ (లక్ష్మీ బ్యారేజీ) మరియు అన్నారం వద్ద గల శ్రీపాద యెల్లంపల్లి మరియు అన్నారం వద్ద గల శ్రీపాద యెల్లంపల్లి మరియు సుందిల్ల వద్ద మరో రెండు బ్యారేజీలను నిర్మించడం.

వీటి ద్వారా కాలువలు, టన్నెల్స్, లిఫ్ట్ పద్ధతులు, రిజర్వాయర్లు, నీటి పంపిణీ వ్యవస్థలను ఉపయోగించి కమాండ్ ఏరియాలో గల 7 జిల్లాల (పునర్విభజన వలన 13 జిల్లాలకు) ఆయకట్టు తొలుత ప్రకటించిన 16,40,000 ఎకరాలకు బదులు 18,25,700 ఎకరాలకు నీటిని అందించుటకు నిర్ణయం తీసుకున్నారు.

i) అలీసాగర్ ఎత్తిపోతల పథకం :
ఈ పథకం ద్వారా నిజామాబాద్ జిల్లాలో గల నవీపేట, రెంజల్, ఎడపల్లి, నిజామాబాద్, డిచ్పల్లి, మాక్లూర్ మండలాలలో సుమారు 53,793 ఎకరాలకు నిజాంసాగర్ ఆయకట్టు ద్వారా నీటి పారుదలలో వచ్చిన కొరత తీర్చుటకు అనుబంధంగా నీటి పారుదల కల్పిస్తారు. కోహ్లి గ్రామం వద్ద గోదావరి కుడి కాలువ నుండి 720 క్యూసెక్కుల నీరు ఎత్తిపోయడం ఈ పథకం ప్రతిపాదన.

ii) అర్గుల రాజారాం గుత్ప – ఎత్తిపోతల పథకం :
నిజాంసాగర్ ఆయకట్టు ద్వారా నీటి పారుదలలో వచ్చిన కొరతను తీర్చుటకు నిజామాబాద్ జిల్లాలో సుమారు 38,792 ఎకరాలకు నిజాంసాగర్ యొక్క D74 నుంచి నుంచి D82 డిస్ట్రిబ్యూటరీల ద్వారా నీటిపారుదల ఈ పథకం ద్వారా కల్పించబడుతుంది.

iii) చౌట్పల్లి హన్మంతరెడ్డి ఎత్తిపోతల పథకం :
శ్రీరాంసాగర్ ప్రాజెక్టు – లక్ష్మీ కెనాల్ యొక్క D4 డిస్ట్రిబ్యూటరీ ద్వారా షెట్పల్లి చెరువును నింపి నిజామాబాద్ జిల్లాలోని కమ్మర్పల్లి, మోర్తాడ్ మండలాలలోని 18 గ్రామాలకు 180 క్యూసెక్కుల నీటిని ఎత్తిపోతల ద్వారా 11,625 ఎకరాలకు నీటిపారుదల సౌకర్యం కల్పించుట ఈ పథకం ఉద్దేశం.

iv) లెండ్ అంతర్ రాష్ట్ర ప్రాజెక్టు :
ఇది తెలంగాణ, మహారాష్ట్రలకు సంబంధించిన అంతర్ రాష్ట్ర ప్రధాన ప్రాజెక్టు. దీని ప్రధాన పనులు మహారాష్ట్రలోని నాందేడ్ జిల్లాలో ఉన్నాయి. ఈ ప్రాజెక్టు ద్వారా తెలంగాణలో 27,000 ఎకరాలు, మహారాష్ట్రలో 22,000 ఎకరాలు మొత్తం 49,000 ఎకరాలకు నీటి పారుదల కల్పించాలనేది ప్రతిపాదన.

v) ఎం. బాగారెడ్డి సింగూరు ప్రాజెక్టు :
సంగారెడ్డి జిల్లా, సింగూరు గ్రామం వద్ద గోదావరి ఉపనది అయిన మంజీరా నది వద్ద ఈ ప్రాజెక్టు నిర్మించబడ్డది. దీని స్థూల నీటి నిలువ స్థాయి 29.91 TMCలు.

vi) జె: చొక్కారావు దేవాదుల ఎత్తిపోతల పథకం :
ఈ పథకం ద్వారా జయశంకర్ భూపాలపల్లి జిల్లా, ఏటూరు నాగారం మండలం, గంగారం వద్ద గోదావరి నది నుంచి ఎత్తిపోతల ద్వారా వరంగల్ పట్టణ ప్రాంతంలో గల ఎత్తు ప్రాంత కరువు భూములైన 6.21 లక్షల ఎకరాలకు నీటి పారుదల సౌకర్యం కల్పించడం.

vii) దిగువ పెంగా ప్రాజెక్టు :
ఇది తెలంగాణ, మహారాష్ట్రల ఉమ్మడి ప్రాజెక్టు. ఇది గోదావరి ఉపనది అయిన పెన్గాంగ వద్ద కలదు. ఈ ప్రాజెక్టు నికర నీటి నిలువ అంచనా 42.67 TMCలు, మహారాష్ట్ర, తెలంగాణ ఈ నీటిని 88:12 నిష్పత్తిలో పంచుకొంటాయి.

viii) శ్రీరామ ఎత్తిపోతల పథకం :
తెలంగాణ రాష్ట్రం ఏర్పడిన తరవాత గతంలో ఉన్న రాజీవ్ దుమ్ముగూడెం, ఇందిరా సాగర్ రుద్రంకోట ఆయకట్టులను కలిపి ఈ పథకాన్ని ప్రారంభించింది. భద్రాద్రి కొత్తగూడెం, ఖమ్మం, మహబూబ్ నగర్ జిల్లాలలో లక్షల ఎకరాలకు నీటిపారుదల కల్పించడం దీని లక్ష్యం.

ix) తుపాకుల గూడెం బ్యారేజి (సమ్మక్క బ్యారేజి) :
ప్రభుత్వం ఈ బ్యారేజి స్థలాన్ని కంతనపల్లి గ్రామం నుంచి తుపాకుల గూడెం గ్రామం, వరంగల్ రూరల్కు బదిలీ చేయుటకు అంగీకారం తెలిపింది. ఈ ప్రాజెక్టు ద్వారా పూర్వ వరంగల్, నల్గొండ, ఖమ్మం జిల్లాలు లబ్ది పొందుతాయి. తెలంగాణ ప్రభుత్వం ఈ ప్రాజెక్టు పేరును “సమ్మక్క బ్యారేజి” గా మార్చుటకు ప్రతిపాదించింది.

x) శ్రీ కుమరం భీం ప్రాజెక్టు :
ఇది ఒక మధ్య తరహా నీటిపారుదల ప్రాజెక్టు. దీనిని ఆసిఫాబాద్ జిల్లా, మండలం, అడ గ్రామం వద్ద స్థాపించుటకు ప్రతిపాదించారు. దీని ద్వారా ఆసిఫాబాద్ జిల్లాలోని వాంకిడి, ఆసిఫాబాద్, కాగజ్ నగర్, సిర్పూర్ (IT) మండలాలలో 69 గ్రామాల 45,500 ఎకరాల ఆయకట్టుకు నీటిపారుదల, అందించాలనేది లక్ష్యం.

xi) పాలెం వాగు ప్రాజెక్టు :
ఇది గోదావరి ఉపనది అయిన పాలెంవాగు వద్ద మధ్యతరహా నీటిపారుదల ప్రాజెక్టు రూపంలో ఉన్నది. జయశంకర్ భూపాలపల్లి జిల్లా వెంకటాపురం మండలం మల్లాపురం గ్రామం ప్రాంతంలో ఉన్నది. ఈ ప్రాజెక్టు ఖరీప్ సీజన్లో 4100 హెక్టార్లు (10,132 ఎకరాలు), రబీ సీజన్లో 1250 హెక్టార్ల భూమికి నీటిపారుదల సౌకర్యాన్ని కల్పించుచున్నది.

xii) శ్రీరాం సాగర్ ప్రాజెక్టు :
దీనిని నిజామాబాద్ జిల్లాలో పోచంపాడు వద్ద గోదావరి నదిపై నిర్మించారు. దీని ముఖ్య లక్ష్యం తెలంగాణ రాష్ట్రంలోని 5 పూర్వ జిల్లాలకు అనగా కరీంనగర్, వరంగల్, ఆదిలాబాద్, నల్గొండ, ఖమ్మం జిల్లాలకు త్రాగునీరు, సాగు నీరును అందించడం. ఈ ప్రాజెక్టు కింద సుమారు 4 లక్షల ఎకరాలకు నీరు లభిస్తుంది.

xiii) కడెం ప్రాజెక్టు :
దీనిని పూర్వ ఆదిలాబాద్ జిల్లాలోని కడెం నదిపై నిర్మించారు. దీని ద్వారా ఆదిలాబాద్ జిల్లాలో 25,000 ఎకరాలకు సాగునీరు లభిస్తుంది.

xiv) నిజాంసాగర్ ప్రాజెక్టు :
పూర్వ నిజామాబాద్ జిల్లాలోని అచ్చంపేట, భంజపల్లి గ్రామాల మధ్య గోదావరి నదికి ఉపనది. అయిన మంజీర నదిపై నిర్మించారు. ఈ డ్యామ్ 2.31 లక్షల ఎకరాల భూమికి సాగునీటిని అందిస్తుంది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

B. కృష్ణానది పరివాహక ప్రాంతం :

i) మహార్మాగాంధీ కల్వకుర్తి ఎత్తిపోతల ప్రాజెక్టు :
మహబూబ్ నగర్ జిల్లాలో 4.10 లక్షల ఎకరాలకు నీటిపారుదల సౌకర్యాన్ని కల్పించి ఎత్తు ప్రాంతాలలో కరువు పీడిత ప్రజలకు తాగునీటి సరఫరా చేయడం ఈ పథకం ఉద్దేశం. శ్రీశైలం ప్రాజెక్టు రిజర్వాయర్ నుంచి మూడు దశలలో ఎత్తిపోతల ద్వారా 40 TMC ల నిలువకు ప్రతిపాదన.

ii) రాజీవ్ భీమా ఎత్తిపోతల పథకం :
ఈ పథకం ద్వారా రెండు ప్రాంతాలలో అనగా జూరాల ప్రాజెక్టు వద్ద గల పంచదేవ్పాడ్, ఉకబెట్టివాగు వద్ద గల రామన్పౌడ్ నుంచి ఎత్తిపోతల ద్వారా నీటిపారుదల సౌకర్యాన్ని ఎత్తు ప్రాంతాలలో తీవ్రమైన కరువును చవిచూసిన పూర్వ మహబూబ్ నగర్ జిల్లాలోని 15 మండలాలలో వివిధ ప్రాంతాలకు విస్తరించడం. అంతేగాక ఈ ప్రాంతాలలో గల 196 గ్రామాలకు తాగు నీరును సరఫరా చేయడం ఈ పథకపు లక్ష్యం.

iii) జవహర్ నెట్టంపాడు ఎత్తిపోతల పథకం :
ప్రియదర్శిని జూరాల ప్రాజెక్టు రిజర్వాయర్ నుంచి 21.425 TMCల నీటిని ఎత్తిపోయడం ద్వారా గద్వాల, ఆలంపూర్ నియోజక వర్గాలలోని 8 మండలాలలో గల 148 గ్రామాలలలో 2 లక్షల ఎకరాలకు నీటిపారుదల సౌకర్యం కల్పించడం ఈ పథకం ఉద్దేశం.

iv) ప్రియుదర్శిని జూరాల ప్రాజెక్టు :
ఇది ఒక బహుళార్ధక సాధక ప్రాజెక్టు. జోగులాంబ గద్వాల జిల్లా, రేవులపల్లి గ్రామం వద్ద కృష్ణా నదిపై దీనిని నిర్మించారు. ఈ ప్రాజెక్టు ఎడమ (ఎన్.టి.ఆర్. కాలువ), కుడి (నల్లసోమనాద్రి కాలువ) కాలువల ద్వారా కరువు పీడిత ప్రాంతాలైన వనపర్తి జిల్లాలోని ఆత్మకూరు, కొత్తకోట, పెబ్బేరు మండలాలు, నాగర్ కర్నూల్ జిల్లాలోని వేపగండల, కొల్లాపూర్ మండలాలు, మహబూబ్ నగర్ జిల్లాలోని ఇటిక్యాల్ మానోపాడ్ మండలాలకు సంబంధించి 1.02 లక్షల ఎకరాలకు నీటి పారుదల కల్పించుట.

v) రాజోలిబండ మళ్లింపు పథకం :
ఇది తెలంగాణ, కర్ణాటక రాష్ట్రాల ఉమ్మడి ప్రాజెక్టు. కర్ణాటకలోని రాయచూర్ జిల్లాలో తుంగభద్ర నదిపై నిర్మించిన ఆనకట్టతో యుక్తమైనది ఈ ప్రాజెక్టు. నిజాం రాష్ట్ర పాలన కాలంలో ఈ పథకం మంజూరు చేయబడ్డది. ఈ ఆనకట్ట 1946లో ప్రారంభించబడి 1958లో పూర్తిచేయబడ్డది.

vi) కోయిల్ సాగర్ ఎత్తిపోతల పథకం :
సుహబూబ్ నగర్ జిల్లా, దేవరకద్ర మండలం, బొల్లారం గ్రామం వద్ద 1955లో ఈ ప్రాజెక్టును నిర్మించారు. మహబూబ్ నగర్ జిల్లా అమరచింత నియోజ వర్గంలోని 12,000 ఎకరాల ఆయకట్టుకు నీటిపారుదల ఈ ప్రాజెక్టు ద్వారా జరుగుతుంది.

vii) పాలమూరు – రంగారెడ్డి ఎత్తిపోతల పథకం :
ఎత్తు ప్రాంతంలో గల 12.310 లక్షల ఎకరాల ఆయకట్టుకు నీటిపారుదల సౌకర్యం కల్పించడం ఈ ప్రాజెక్టు లక్ష్యం. ఈ ప్రాజెక్టు ద్వారా నాగర్ కర్నూల్ (1 లక్ష ఎకరాలు), మహబూబ్ నగర్ (4.14 లక్షల ఎకరాలు), రంగారెడ్డి (3.64 లక్షల ఎకరాలు), వికారాబాద్ (3.32 లక్షల ఎకరాలు), నల్గొండ (0, 30 లక్షల ఎకరాలు) జిల్లాలకు నీటి పారుదలతో బాటు సమీప గ్రామాలకు, GHMCకి తాగు నీరు మరియు పారిశ్రామిక అవసరాలకు నీటి సౌకర్యం సమకూర్చాలనేది ప్రభుత్వ ఆశయం.

viii) గట్టు ఎత్తిపోతల పథకం :
జోగులాంబ గద్వాల జిల్లాలోని గట్టు, దరూర్, కె.టి. దొడ్డి మండలాలలోని ఎత్తు ప్రాంతాలలో గల 28,000 ఎకరాలకు నీటి పారుదల సౌకర్యం కల్పించడం ఈ పథకం ముఖ్య లక్ష్యం.

ix) డిండి ఎత్తిపోతల పథకం:
నల్గొండ జిల్లాలోని ఎత్తు ప్రాంతాలు కరువు పీడిత ప్రాంతాలే కాకుండా వీటిలో చాలా ప్రాంతాలు ఫ్లోరైడ్ సమస్యకు గురైనాయి. ఈ సమస్య నివారణకు ఇక్కడి ప్రాంతాలకు ఏకైక మార్గం కృష్ణా నది నీరు. డిండి ప్రాజెక్టు ద్వారా నాగర్ కర్నూల్, నల్గొండ, యాదాద్రి భువనగిరి, రంగారెడ్డి జిల్లాలకు 3.61 లక్షల ఎకరాలకు నీటి పారుదల సౌకర్యాన్ని కల్పించడంతో బాటు తాగు నీటి సౌకర్యాన్ని కల్పించడం జరుగుచున్నది.

x) ఉదయ సముద్రం ఎత్తిపోతల పథకం :
ఎలిమినేటి మాధవ రెడ్డి శ్రీశైలం ఎడమ కాలువ బాలెన్సింగ్ రిజర్వాయర్ అయిన ఉదయ సముద్రం నుంచి ఎత్తిపోతల ద్వారా 6.70 TMC ల నీటిని నల్గొండ జిల్లాలోని నక్రేకల్, నల్గొండ, మునుగోడు, తుంగతుర్తి అసెంబ్లీ నియోజక వర్గాలలో తీవ్రంగా క్షామం, కరువు పీడిత ఎత్తు ప్రాంతాలలో 1 లక్ష ఎకరాలకు నీటిపారుదల సౌకర్యం కల్పించడం ఈ పథకం లక్ష్యం.

xi) నాగార్జున సాగర్ ప్రాజెక్టు :
ఇది ప్రపంచంలోనే అతి పెద్ద బహుళార్థ సాధక ప్రాజెక్టు. దీనిని కృష్ణా నదిపై నల్గొండ,, గుంటూరు జిల్లాల సరిహద్దుల్లో నిర్మించారు. ఈ ప్రాజెక్టు కుడి కాలువ ద్వారా ఆంధ్రాకు 1.11 మిలియన్ హెక్టార్లకు, తెలంగాణకు 0.32 మిలియన్ హెక్టార్లకు నీరు లభిస్తుంది.

xii) శ్రీశైలం ప్రాజెక్టు :
దీనిని కృష్ణా నది పైస మహబూబ్ నగర్, కర్నూలు జిల్లాల సరిహద్దుల్లో నిర్మించారు. దీని ఎడమ కాలువ ద్వారా 4.20 లక్షల ఎకరాల భూమికి సాగు నీరు లభిస్తుంది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 7.
తెలంగాణ రాష్ట్రంలో IT, ITeS వృద్ధి, దృష్టి కోణాన్ని అంచనా వేయండి.
జవాబు.
రాష్ట్ర ఆర్ధిక వ్యవస్థ అభివృద్ధి చెందుతున్నప్పుడు వ్యవసాయాధార వ్యవస్థ నుంచి పారిశ్రామిక ఆర్థిక వ్యవస్థగా రూపాంతరం చెందుతుంది. ఆర్థికాభివృద్ధి ప్లవన దశకు (take off stage) చేరుకున్నప్పుడు సేవా రంగం వృద్ధి త్వరిగతిన జరగడమే కాకుండా పారిశ్రామిక రంగం కంటే ముందుంటుంది.

రాష్ట్ర ఆర్థిక వ్యవస్థలో జోడించిన స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి విలున (GVSA)లో సేనా రంగం 2018-19 (మొదటి సవరించిన అంచనా) లో స్థిర ధరలలో 64.5 శాతం నాటాను కలిగి ఉండి ముందంజ రంగంగా కొనసాగుతున్నది.

తెలంగాణలో ఇన్ఫర్మేషన్ టెక్నాలజీ (IT), దాని అనుబంధ సేవలు (ITeS) : ఇన్ఫర్మేషన్ టెక్నాలజీ (IT), దాని అనుబంధ సేవల (ITeS) ఉత్పత్తి, ఎగుమతులలో తెలంగాణ రాష్ట్రం ప్రముఖ స్థానాన్ని కలిగి ఉంది. IT రంగం ద్వారా వచ్చిన పెను మార్పులు నూతన అవకాశాలను ప్రత్యేకించి బిగ్ డేటా అనలిటిక్స్, సైబర్ సెక్యూరిటీ, క్లౌడ్ కంప్యూటింగ్, యానిమేషన్ గేమింగ్ వంటి వాటిని కల్పించింది. రాష్ట్ర రాజధాని నగరమైన హైదరాబాద్ ప్రాపంచిక IT హబ్ గా గుర్తింపు పొందింది.

ఇక్కడ చిన్నవి, పెద్దవి కలిపి 1500 IT, ITeS కంపెనీలు ప్రత్యక్షంగా 4.3 లక్షల వృత్తి నైపుణ్యులకు ఉద్యోగిత కల్పించడమే కాకుండా 7 లక్షల మందికి పరోక్ష ఉద్యోగితను కల్పించుచున్నవి. 2014-15 నుంచి IT, ITeS రంగంలో బలమైన వృద్ధి చోటు చేసుకొనుచున్నది. ఈ స్థితిని పట్టిక – 10.7 ద్వారా చూడవచ్చు. 2014-15 నుంచి 2016-17 మధ్య కాలంలో IT, ITeS యూనిట్ల సంఖ్య, ఉద్యోగిత, ఎగుమతులలో శ్రీఘ్రతర వృద్ధి ఏర్పడింది.

2018-19 లో రాష్ట్ర IT సాఫ్ట్వేర్ ఉత్పత్తుల ఎగుమతుల విలువ రూ. 1,09,219 కోట్లు (US$15.6 బిలియన్లు), దేశ IT ఎగుమతులలో తెలంగాణ రాష్ట్ర వాటా 11 శాతం, దేశానికి IT ఎగుమతుల ద్వారా సంక్రమించే రాబడిలో హైదరాబాద్ 2 స్థానాన్ని కలిగి ఉంది.

IT విధానం :
దేశంలో సాంకేతికత పెట్టుబడులకు ప్రధాన కేంద్రంగా మార్చే లక్ష్యంతో IT, ITeS సేవలను పెంపొందించి ఈ రంగాల్లో పెట్టుబడులను ఆకర్షించి ఉద్యోగితను పెంచుట కొరకు తెలంగాణ ప్రభుత్వం ICT (Information and Commu- nication Technology) విధానాన్ని రూపొందించింది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

IT, ITeS ప్రధాన లక్ష్యాలు :

i) IMAGE టవర్ :
అధునాతన అవస్థాపనా సౌకర్యాల కల్పన ద్వారా యానిమేషన్, గేమింగ్, VFX సేవల కల్పనకు IMAGE టవర్ను నెలకొల్పుటకు తెలంగాణ ప్రభుత్వం సంకల్పించింది. దీనిని రుద్రారం గ్రామం, రంగారెడ్డి జిల్లాలో 10 ఎకరాల స్థలంలో రూ. 1,000 కోట్లతో ప్రభుత్వ, ప్రైవేట్ భాగస్వామ్యం (PPP)లో స్థాపించ తలపెట్టింది.

ii) తెలంగాణ ఫైబర్ గ్రిడ్ ప్రాజెక్టు:
ఈ ప్రాజెక్టును తెలంగాణ ప్రభుత్వం 2015లో ప్రారంభించింది. తగిన అవస్థాపనా సౌకర్యాలను కల్పించి 10 జోన్లు (33 జిల్లాలో) గా ‘డిజిటల్ తెలంగాణ’ను సాకారం చేయడం ఈ ప్రాజెక్టు ప్రధాన లక్ష్యం.

iii) ఎలక్ట్రానిక్ నేవల డెలివరీ (ESD) :
రాష్ట్ర ప్రజలకు, వ్యాపారస్థులకు ప్రభుత్వం కల్పించే ఎలక్ట్రానిక్ సేవలలో పారదర్శకత, జవాబుదారీతనం, సామర్థ్యంతో కూడిన డెలివరీలో ESD నోడల్ ఏజెన్సీగా విధులను నిర్వర్తిస్తుంది. డిజిటల్ తెలంగాణ సాధనలో భాగంగా సాంకేతికత ద్వారా ప్రజాకేంద్రక స్మార్ట్ సేవలు అందించుట ESD లక్ష్యం. ESD, 550 పై చిలుకు సేవలను 38 కార్యా లయాల ద్వారా మీ సేవ, T-వాలెట్, T-ఆప్ వంటి వాటి ద్వారా తెలంగాణ రాష్ట్ర ప్రజలకు సేవలను అందించుచున్నది.

iv) నైపుణ్యం, విజ్ఞానాన్నిఅందించే తెలంగాణ అకాడమి (TASK) :
IT, ITeS, జీవశాస్త్రాలు ఆరోగ్యం రక్షణ, ఏరోస్పేస్, బాంకింగ్, ఆర్ధిక, సేవలు వంటి రంగాలకు అవసరమైన శ్రామికశక్తి నైపుణ్యాల పెంపుదల కోసం ఉద్దేశించిన ఏకైక సంస్థ TASK (Telangana Academy for Skill and Knowledge) విద్యా రంగం, పరిశ్రమల భాగస్వామ్యంతో లాభరహిత వ్యవస్థగా TASK నెలకొల్పబడింది.

డిగ్రీ, ఇంజనీరింగ్ విద్యను అభ్యసించిన విద్యార్ధులకు సాంకేతిక, సాంకేతికేతర సాఫ్ట్ స్కిల్స్ అందించి పరిశ్రమలకు పూర్తి తయారీ రూపంలో శ్రామిక శక్తిని అందించుట TASK లక్ష్యం.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 8.
తెలంగాణ రాష్ట్ర ప్రభుత్వం చేపట్టిన అభివృద్ధి, సంక్షేమ పథకాలను క్లుప్తంగా వివరించండి.
జవాబు.
తెలంగాణ రాష్ట్రంలో అభివృద్ధి సంక్షేమ పథకాలు :
తెలంగాణ ప్రత్యేక రాష్ట్రంగా అవతరించిన నాటి నుంచి పేద ప్రజల జీవన ప్రమాణ స్థాయిలో పెంపుదల కోసం తెలంగాణ రాష్ట్ర ప్రభుత్వం అనేక పథకాలను రూపొందించింది. వీటిని గురించి కింద వివరించవచ్చు.

a) పౌరులందరికీ సంబంధించిన అభివృద్ధి, సంక్షేమ పథకాలు :

i) ఆసరా పెన్షన్ల పథకం :
సంక్షేమ కార్యక్రమాలు, సాంఘిక భద్రత కల్పనలో భాగంగా పేదవారు గౌరవంగా జీవనాన్ని గడపడానికి వీలుగా తెలంగాణ ప్రభుత్వం ‘ఆసరా పెన్షన్’ల పథకాన్ని ప్రవేశపెట్టింది. సమాజంలో అతి పేదవారికి, బలహీన వర్గాలకు రక్షణ కల్పించుటలో భాగంగా ఎయిడ్స్ రోగులు, వితంతువులు, అశక్తులైన నేత పనివారు, గీత కార్మికులు, పెరుగుతున్న వయస్సుతో జీవన అవసరాలు కోల్పోయిన వారికి ఈ పథకం ద్వారా సహాయం లభిస్తుంది.

నవంబర్ 8, 2014 న ఈ పథకాన్ని పూర్వ మహబూబ్ నగర్ జిల్లాలోని, కొత్తూరులో పథకాన్ని ప్రారంభించారు.

ii) ఆరోగ్యలక్ష్మి :
గర్భిణీ స్త్రీలు, పిల్లలకు పాలిచ్చే తల్లులలో పౌష్టిక, పోషక విలువలు పెంచుట కొరకు ఈ పథకాన్ని రూపొందించారు. తెలంగాణ ప్రభుత్వం ఈ పథకాన్ని అంగన్ వాడి కేంద్రాల ద్వారా పేదరికపు రేఖకు దిగువన ఉన్న గర్భిణీ స్త్రీలు, 6 సంవత్సరాల లోపు వయస్సు గల పిల్లలకు ప్రతిరోజు పోషకాహాన్ని అందిస్తుంది. ఈ పథకాన్ని జనవరి 1, 2015 న ప్రారంభించారు.

iii) అమ్మ ఒడి :
రాష్ట్రంలో మాతా, శిశు మరణాలను తగ్గించుట కొరకు ప్రభుత్వం ఈ పథకాన్ని ప్రవేశపెట్టింది. ఈ పథకం ద్వారా గర్భిణీ స్త్రీలకు ప్రసూతికి ముందు, ప్రసూతి తరవాత ఆర్థిక, రవాణా సహకారం కల్పించబడుతుంది.

iv) మిషన్ భగీరథ :
కృష్ణా, గోదావరి నదుల నీటి సహాయంతో శుద్ధి చేసిన తాగు నీరుసు పైపులైను ద్వారా రాష్ట్ర ప్రజలకు అందుబాటులోకి తేవడం ఈ పథకం ముఖ్య ఆశయం. ఆగష్టు 7, 2016న మెదక్ జిల్లా, గజ్వేల్ నుండలం, కోమటిబండ గ్రామంలో ఈ పథకాన్ని ప్రారంభించారు.

v) పేదవారికి గృహాలు :
ఈ పథకం ద్వారా హైదరాబాద్, ఇతర పట్టణ ప్రాంతాలలో రెండంతస్తుల మూడంతస్తుల భవనాలలో రెండు పడకల గదుల (2 BHK) ప్లాట్లు, గ్రామీణ ప్రాంతాలలో స్వతంత్ర గృహాలు నిర్మించి ఇవ్వాలని ప్రభుత్వం నిర్ణయించింది.

vi) బియ్యం పంపిణీ :
ఈ పథకాన్ని జనవరి, 1, 2015న ప్రారంభించారు. కుటుంబ సభ్యుల సంఖ్యతో సంబంధం లేకుండా ఒక రూపాయికి కిలోగ్రాము చొప్పున 6 కిలోల బియ్యాన్ని తెలంగాణ రాష్ట్ర సివిల్ సప్లయ్ కార్పోరేషన్ చౌక ధరల దుకాణాల ద్వారా సప్లయ్ చేస్తుంది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

B. SC/STs వర్గాల అభివృద్ధి, సంక్షేమ పథకాలు :

i) SC, ST ల ప్రత్యేక అభివృద్ధి నిధి :
SC, ST ల ప్రత్యేక అభివృద్ధి నిధి (SDF) చట్టం, 2017 ననుసరించి తెలంగాణ ప్రభుత్వం రెండు బడ్జెట్ పద్దులను అనగా (i) SC ప్రత్యేక అభివృద్ధి నిధి (SCSDF), (ii) ST ప్రత్యేక అభివృద్ధి నిధి (STSDF) లను రూపకల్పన చేసింది.

ii) షెడ్యూల్డ్ కులాల సంక్షేమం :
తెలంగాణలో షెడ్యూల్డ్ కులాల అభివృద్ధి శాఖ కింద వివరించిన పథకాల అమలును పర్యవేక్షిస్తుంది.

a) SC లకు కల్యాణ లక్ష్మి :
అక్టోబర్, 2, 2014న ఈ పథకాన్ని ప్రభుత్వం ప్రారంభించింది. తెలంగాణకు చెందిన SC వర్గపు 18 సంవత్సరాల వయస్సు పై బడిన బాలిక వివాహ ఖర్చుల కొరకు వధువు కుటుంబానికి రూ. 51,000 ప్రభుత్వం గతంలో ఇచ్చేది. ఇందుకు SC కుటుంబపు తల్లిదండ్రుల ఆదాయ పరిమితి 2 లక్షల రూపాయలు. కాగా కల్యాణ లక్ష్మి గ్రాంటును ప్రభుత్వం 2017లో రూ.75,116 లకు, 2018 లో రూ.1,00,116 లకు పెంచింది.

b) అంబేద్కర్ ఓవర్సీస్ నిధి పథకం :
ఈ గ్రాంటు ద్వారా విద్యార్థులు USA, UK, కెనడా, ఆస్ట్రేలియా, సింగపూర్, ఫ్రాన్స్, జర్మనీ, జపాన్, న్యూజిలాండ్ మరియు సౌత్ కొరియా వంటి దేశాల్లో విద్యను అభ్యసించవచ్చు. 2018-19 సంవత్సరంలో 101 మంది విద్యార్థులు ఈ పథకంలో ఎంపికయ్యారు.

c) భూమి కొనుగోలు పథకం :
నిరుపేద షెడ్యూల్డ్ కులాల మహిళలకు లబ్ధి చేకూర్చుటకు ఈ పథకాన్ని రూపొందించారు. ఈ పధరం కింద 2014-16 నుంచి 2019-20 మధ్య కాలంలో దాదాపు రూ.667.71 కోట్ల వ్యయంతో సుమారు 15,044.35 ఎకరాల భూమిని కొనుగోలు చేయగా 5,930 మందికి పంపిణీ చేశారు.

iii) షెడ్యూల్డ్ తెగల సంక్షేమం :
షెడ్యూల్డ్ తెగల సమగ్రాభివృద్ధి కొరకు తెలంగాణ ప్రభుత్వం కింద తెలిపిన పథకాలను అమలు పరుస్తున్నది.

a) ST లకు కల్యాణ లక్ష్మి :
ఈ పథకాన్ని అక్టోబర్ 2, 2014లో ప్రారంభించారు. ఈ పథకం కింద 18 సంవత్సరాలు నిండిన తెలంగాణకు చెందిన ST యువతి కళ్యాణ ఖర్చుల కోసం రూపాయలు 1,00,116 ఆర్థిక సహాయం ఇవ్వబడుతుంది.

b) ఆర్థిక మద్దతు పథకాలు :
ఈ పథకం ద్వారా వ్యవసాయ రంగం, ఉద్యానవనం, మత్స్య పరిశ్రమ, చిన్న నీటి పారుదల, పశు సంవర్ధకం, స్వయం ఉపాధి వంటి రంగాలలో నిమగ్నమైన గిరిజనులకు ఆర్థిక సహాయం కల్పిస్తారు.

c) అడవి హక్కుల చట్టం, 2006 :
తమ జీవనోపాధి కొరకు కొన్ని యుగాల నుంచి అడవుల పై ఆధారపడి జీవించే గిరిజనులు, ఇతర సంప్రదాయ ఆటవిక జీవులకు తమ జీవనాన్ని కొనసాగించుకొనే రక్షణను అడవి హక్కుల చట్టం 2006 కల్పిస్తుంది. ఈ చట్టం ప్రకారం 93,494 మంది గిరిజనులకు 3,00,092 ఎకరాల భూమిని పంపిణీ చేయడం జరిగింది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

C. వెనకబడిన వర్గాల (BC) అభివృద్ధి, సంక్షేమ పథకాలు :

వెనకబడిన తరగతుల వర్గాల సంక్షేమం కోసం తెలంగాణ ప్రభుత్వం చేపట్టిన పథకాలు :

i) కళ్యాణ లక్ష్మి :
2016-17 సంవత్సరం నుంచి కళ్యాణ లక్ష్మి పథకాన్ని వెనకబడిన తరగతులు (BC), ఆర్థికంగా వెనకబడిన తరగతుల వారికి కూడా వర్తింపజేశారు.

ii) చాలా వెనకబడిన తరగతుల అభివృద్ధి కార్పోరేషన్ :
వెనకబడిన తరగతుల వర్గాలలో సాంఘికంగా, విద్యాపరంగా, ఆర్థికపరంగా చాలా వెనకబడిన తరగతుల (MBC) సంక్షేమంలో మెరుగుదల కొరకు ఈ కార్పోరేషన్ ను 2017లో తెలంగాణ ప్రభుత్వం స్థాపించింది.

D. మైనార్టీల అభివృద్ధి, సంక్షేమ పథకాలు :
తెలంగాణ రాష్ట్రంలో మైనార్టీ వర్గం వారి సాంఘిక, ఆర్థిక స్థితిగతులలో పెంపుదల కోసం తెలంగాణ ప్రభుత్వం చేపట్టిన. కొన్ని ముఖ్యమైన పథకాలను కింద వివరించాం.

a) బ్యాంక్ తో అనుసంధానం చేయబడిన సబ్సిడీ పథకం :
మైనార్టీ వర్గాల వారు స్వయంఉపాధి చేపట్టే వ్యాపారం చేసేవారికి ఈ పథకాన్ని ఉద్దేశించారు. సబ్సిడీతో కూడుకున్న ఆర్థిక సహాయాన్ని బ్యాంకుల ద్వారా మైనార్టీ ఫైనాన్స్ కార్పోరేషన్ కల్పిస్తుంది.

b) శిక్షణ, ఉద్యోగిత, నైపుణ్య అభివృద్ధి :
మైనార్టీల శాఖ మైనార్టీ యువతకు తగిన శిక్షణను ఆ వారు స్వయం ఉపాధి చేపట్టుటకు వీలుగా మైనార్టీ పైనాన్స్ కార్పోరేషన్ ద్వారా ఆర్థిక సహకారాన్ని అందిస్తుంది.

c) షాదీ ముబారక్ పథకం :
ఈ పథకం ప్రకారం అర్హమైన మైనార్టీ వర్గానికి చెందిన యువతి పెళ్ళి ఖర్చులకు రూ.1,00,116 గ్రాంటు రూపంలో ఇవ్వబడుతుంది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

స్వల్ప సమాధాన ప్రశ్నలు:

ప్రశ్న 1.
తెలంగాణ ఆర్థిక వ్యవస్థలో రంగాల వారీ వృద్ధి రేటు ధోరణులను వివరించండి.
జవాబు.
ఆర్థిక వ్యవస్థలో గల వివిధ రంగాలు ప్రదర్శించిన వృద్ధి రేట్లు ఆ వ్యవస్థ యొక్క వృద్ధి ధోరణిని తెలుపుతాయి. ఆర్థిక వ్యవస్థలో గల వివిధ రంగాలను 16 రంగాలుగా విభజించినప్పటికీ సులభంగా గ్రహించుట కొరకు వీటిని స్థూలంగా మూడు రంగాలుగా వర్గీకరిస్తారు.
అవి : ప్రాథమిక, ద్వితీయ, గౌణ రంగాలు. ఈ రంగాల వృద్ధి రేట్లను ప్రాథమిక ధరలలో జోడించిన స్థూల ఉత్పత్తి విలువ (GVA) తో సూచిస్తారు.

a) ప్రాథమిక రంగం :
ఈ రంగంలో పంటలు, పశుసంపద, అడవులు, మత్స్య పరిశ్రమ, గనులు మొదలైనవి.

b) ద్వితీయ రంగం :
ఇందులో తయారీ రంగం, గ్యాస్, నీటి సరఫరా, ఇతర అనుబంధ సేవలు మొదలైనవి.

c) గౌణ రంగం :
ఇందులో వ్యాపారం రిపేర్ సేవలు, హోటళ్ళు, రెస్టారెంటులు, రవాణా (రైల్వే రోడ్ వే, నౌకాయానం, విమానయానం మొ.||) నిలువ (storage), కమ్యూనికేషన్, బ్రాడ్కాస్టింగ్, ఆర్థిక సేవలు, స్థిరాస్థి రంగం, ప్రభుత్వ పాలన మొదలైనటువంటివి ఉంటాయి.

ఆర్థిక వ్యవస్థలో వివిధ రంగాల విశ్లేషణ ఆ వ్యవస్థలో ఆయా రంగాల పని తీరుని తెలుపుటకు, ఆర్థిక స్థితిగతుల అంచనాకు తోడ్పడుతుంది. అంతేగాక ప్రస్తుత సంవత్సరంలో ఆర్థికవ్యవస్థలో ఆయా రంగాలు ఏ విధమైన పనితీరును కనబరచాయో, రాబోయే కాలంలో ఏ విధంగా పనిచేయగలవో తెలుసుకొనుటకు వీలవుతుంది.

ప్రాథమిక రంగం వృద్ధి రేటు 2012-13లో 21.9 శాతం (స్థిర ధరలో 8.6 శాతం) నుంచి 2015-16 లో కేవలం 2.2 శాతానికి (స్థిర ధరలలో 58 శాతం) తగ్గగా 2016-17 నాటికి 17.1 శాతానికి పెరిగి తిరిగి 2019-20 (AE)లో 15.8 శాతానికి (స్థిర ధరలలో 10.7 శాతం) తగ్గింది.

ఈ విధంగా ప్రాథమిక రంగంలో మిశ్రమ వార్షిక సగటు వృద్ధి రేట్లు నమోదగుటను గమనించవచ్చు. 2012-13, 2014-15 సంవత్సరాలలో ద్వితీయ రంగం రుణాత్మక వృద్ధి రేటును చవిచూడగా 2015-16 లో అత్యధిక వృద్ధి రేటు అనగా 20.3 శాతం (స్థిర ధరలలో 21.4 శాతం) ను నమోదు చేసుకొన్నది.

2019-20 (AE) ప్రకారం ఈ రంగంలో 5.3 శాతం వృద్ధిరేటు నమోదయింది. 2012-13 నుంచి 2019-20 మధ్య కాలంలో గౌణ రంగపు వృద్ధి రేటు 18.4 శాతం నుంచి 14.1 శాతం (స్థిర ధరలలో 8.4 శాతం నుంచి 9.6 శాతం) మధ్య కొనసాగింది. మొత్తానికి తెలంగాణ రాష్ట్ర ఆర్థిక వ్యవస్థలో ప్రస్తుత, స్థిర ధరలలో జోడించిన స్థూల రాష్ట్ర ఉత్పత్తి విలువ వృద్ధి రేటులో మిశ్రమ ధోరణిని చూడవచ్చు.

జోడించిన స్థూల రాష్ట్ర ఉత్పత్తి విలువ (GSVA) లో వివిధ రంగాల వాటా :
GSVA లో గౌణ రంగం లేదా సేవల రంగం వాటా 2011-12లో 52.8 శాతం నుంచి 2019-20 (AE) నాటికి 65.2 శాతానికి పెరగగా, ప్రాథమిక రంగం లేదా వ్యవసాయ రంగం దాని అనుబంధ రంగాల వాటా ఇదే కాలంలో 19.6 శాతం నుంచి 18.6 శాతానికి తగ్గగా, ద్వితీయ రంగం లేదా పారిశ్రామిక రంగం వాటా 27.6 శాతం నుంచి 16.2 శాతానికి తగ్గింది. తెలంగాణ రాష్ట్రపు GSVAలో ప్రాథమిక, ద్వితీయ రంగాల వాటా అస్థిర రూపంలో ఉండగా, గౌణ రంగం లేదా సేవల రంగం వాటా స్థిరంగా ఉండటాన్ని గమనించవచ్చు.

ప్రశ్న 2.
తెలంగాణ ఆర్థిక వ్యవస్థలో రంగాల వారీ వృద్ధి రేటు ధోరణులను వివరించండి.
జవాబు.
ఒక రాష్ట్ర ఆర్థిక వ్యవస్థ అభివృద్ధి ఆ వ్యవస్థలో లభ్యమవుతున్న వనరులపై ఆధారపడి ఉంటుంది. మానవ వనరులు ఉంటే, సహజ వనరులను అభిలషణీయంగా, సమర్థవంతంగా వినియోగపరిచి, రాష్ట్ర ప్రగతికి, అధిక ఉత్పత్తికి కారకులవుతారు. నాణ్యమైన జనాభాతో పాటు మూలధన కల్పన, సాంకేతిక పరమైన మార్పులు ఆర్థిక వ్యవస్థకు చలనత్వాలను కలిగిస్తుంది.

2011 జనాభా లెక్కల ప్రకారం తెలంగాణ జనాభా దాదాపు 42%గా నమోదయింది. భారతదేశమొత్తం భౌగోళిక వైశాల్యంలో తెలంగాణ 3.5% విస్తీర్ణం కల్గి ఉంది. రంగారెడ్డి జిల్లా జనాభాలో అత్యధికంగా 52.97 లక్షల మంది ఉండగా, నిజామాబాద్ జిల్లా జనాభాలో 25.51 లక్షల మందితో చివరి భాగాన ఉంది.

జనసాంద్రత :
ప్రతి చదరపు కిలోమీటరులో నివసించే జనాభాను జనసాంద్రత అంటారు. ఈ జనసాంద్రత జనాభా పెరుగుదల రేటును బట్టి మారుతూ ఉంటుంది. భారతదేశ మొత్తం జనసాంద్రతతో పోలిస్తే తెలంగాణలో జనసాంద్రత పెరుగుదల తక్కువగా ఉంది.

హైదరాబాద్ జిల్లా రాష్ట్ర రాజధాని నగరం కాబట్టి అధిక జనసాంద్రతను కల్గి ఉండి చదరపు కిలోమీటరుకు 18,172 మంది నివసిస్తున్నారు. 2001-2011 జనాభా లెక్కల ప్రకారం తెలంగాణలో జనాభా వృద్ధి రేటు 1.4% భారతదేశ జనాభా వృద్ధి రేటు 1.84% కంటే తక్కువ.

పిల్లల జనాభా :
0-6 సం॥లోపు వారిని పిల్లలు అంటారు. తెలంగాణలో పిల్లల జనాభా శాతం 2001లో 14.2% నుంచి 2011లో 10.5% తగ్గింది. ఈ తగ్గుదలకు కారణం పెరుగుతున్న అక్షరాస్యత, అధిక ఆదాయాలకు తోడు కుటుంబ నియంత్రణ పద్ధతులు అవలంబించడం. అన్ని జిల్లాలలో పిల్లల జనాభా శాతం రాష్ట్ర సగటుకు దగ్గరగా 10.5% గా ఉన్నది. ఒక మహబూబ్ నగర్ జిల్లాలో మాత్రం పిల్లల జనాభా 17.4% గా ఉంది.

కుటుంబ పరిమాణం, ఎస్.సి. & ఎస్.టి. జనాభాలో స్త్రీ, పురుషుల నిష్పత్తి :
జనాభా లెక్కల ప్రకారం కొంతమంది వ్యక్తులు `ఒక దగ్గర కలిసి జీవిస్తూ ఒకే వంటగదిని వాడుకోవడాన్ని కుటుంబం అంటారు. మొత్తం జనాభాను గృహాల సంఖ్యచే భాగించగా కుటుంబ పరిమాణం వస్తుంది. తెలంగాణలో సగటు కుటుంబ పరిమాణం 42% గా ఉంది.

ఎస్.సి/ఎస్.టి. జనాభా :
2011 జనాభా లెక్కల ప్రకారం షెడ్యూల్ కులాల (ఎస్.సి.) జనాభా మొత్తం రాష్ట్ర జనాభాలో 15.44% ఉంది. అదే విధంగా షెడ్యూల్ తెగల (ఎస్.టి.) జనాభా మొత్తం రాష్ట్ర జనాభాలో 9.34% ఉంది. .2011 జనాభా లెక్కల ప్రకారం ఎస్.సి. జనాభా మొత్తం జనాభాలో 54,32,650 మంది ఉన్నారు.

ఎస్.టి. జనాభా 32,86,928 మంది. ఎస్.సి. జనాభా అత్యధిక శాతం కరీంనగర్ జిల్లాలో 18-80%గా నమోదయ్యారు. అత్యల్పం హైదరాబాద్ 6.29%. ఎస్.టి. జనాభా ఖమ్మం జిల్లాలో 27.37%గా ఉంది. అత్యల్పం హైదరాబాద్లో 1.24%గా ఉంది. పట్టణాల కంటే గ్రామాలలోనే అధిక జనాభా వృద్ధి నమోదయింది.

స్త్రీ-పురుష నిష్పత్తి :
1000 మంది పురుషులకు స్త్రీల సంఖ్య ఆధారంగా స్త్రీ, పురుష నిష్పత్తి నిర్ణయించబడుతుంది. 2011 జనాభా లెక్కల ప్రకారం తెలంగాణలో ప్రతి 1,000 మంది పురుషులకు 990 మంది స్త్రీల అనుపాతం ఉంది.

మానవ అభివృద్ధి సూచి :
ఇది మూడు అంశాల వారిగా రూపొందించారు.

  1. పుట్టిన సమయంలో ఆయుఃప్రమాణం
  2. శిశుమరణాల రేటు
  3. అక్షరాస్యతా స్థాయి.

తెలంగాణలో మానవ అభివృద్ధి సూచిక (HDI):

TS Inter 2nd Year Economics Study Material 10th Lesson తెలంగాణ ఆర్థిక వ్యవస్థ 1

వలసదారుల వాటా :
తెలంగాణలోని పట్టణ జనాభాలో అధిక పెరుగుదలకు ఆంధ్ర ఇతర రాష్ట్రాల నుండి వలసదారులే కారణం. 1961 నుంచి 2011 మధ్య కాలంలో తెలంగాణలో వలసదారుల జనాభా 62 లక్షలు. పట్టణ జనాభాలో రంగారెడ్డి జిల్లా మొదటి స్థానంలో నిలిచింది. 70% జనాభా పట్టణ వాసులే. దీనికి కారణం పట్టణాల అభివృద్ధి మరియు హైదరాబాద్ పరిసరాల అభివృద్ధి.

అక్షరాస్యత :
2011 జనాభా లెక్కల ప్రకారం తెలంగాణలో అక్షరాస్యత శాతం 66%.

ప్రశ్న 3.
తెలంగాణ వ్యవసాయ రంగాన్ని చర్చించండి.
జవాబు.
తెలంగాణలో వ్యవసాయ రంగం : వ్యవసాయం ప్రధానంగా వర్షాధారంపై ఆధారపడి, అధిక భాగం భూగర్భ జలాల (ground water) ద్వారా సాగు చేయబడుతుంది. దాదాపు నేటికి 55.49% మంది ప్రజలు జీవనోధారం కోసం వ్యవసాయ పనుల పైననే ఆధారపడుతున్నారు.

విలువతో కూడిన స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి (GSVA) లో వ్యవసాయ రంగం వాటా 2018-19 (మొదట సవరించిన అంచనా) లో ప్రస్తుత ధరలలో 18.1 శాతం (స్థిర ధరలలో 15.6 శాతం) కాగా 2019-20 (ముందస్తు అంచనా) లో ఇది ప్రస్తుత ధరలలో 18,6 శాతం (సిర ధరలలో 16 శాతం).

భారతదేశ భౌగోళిక వైశాల్యంలో తెలంగాణ 12వ అతిపెద్ద రాష్ట్రం. తెలంగాణ రాష్ట్ర మొత్తం భూమి వైశాల్యం 112.08 లక్షల హెక్టారులు. ఇందులో 60 శాతం భూమి వ్యవసాయ యోగ్యమైనది. 2018-19లో 48.98 లక్షల హెక్టార్ల భూమి నికర పంట భూమి కాగా 60.59 లక్షల హెక్టార్ల భూమి స్థూల పంటల భూమి.

కాగా రాష్ట్ర భౌగోళిక వైశాల్యంలో అడవుల కింద గల భూవిస్తీర్ణం 26.98 లక్షల హెక్టార్లు, దాదాపుగా 24.07 శాతం. ఇక వ్యవసాయేతర భూవిస్తీర్ణం 8.34 లక్షల హెక్టారులు, 15.78 లక్షల హెక్టార్లు తడి భూమి, వ్యవసాయానికి పనికి రాని భూమి 6.07 లక్షల హెక్టార్లు, 5.94 లక్షల హెక్టార్ల భూమి పచ్చిక భూమి.

నికర, స్థూల పంటసాగు భూమి :
తెలంగాణ రాష్ట్రంలో గల వివిధ జిల్లాలలో 2018-19లో భౌగోళిక వైశాల్య పరంగా పంటలు పండించిన నికర భూమి 46. 60 లక్షల హెక్టార్లు (41.5 శాతం).

తెలంగాణలో ఆహార, ఆహారేతర పంటల సాగు భూవిస్తీర్ణం :
ధాన్యాలు, చిరుధాన్యాలు, పప్పు దినుసులు వంటివి ఆహార పంటలు. కాగా పత్తి, నూనెగింజలు, పూలు వంటివి ఆహారేతర పంటలు. 2017-18 సంవత్సరంలో 37.14 లక్షల హెక్టార్ల భూమిలో ఆహార పంటలు సాగు చేయబడ్డాయి. రాష్ట్రంలో పత్తి, నూనెగింజలు, పూలు, పొగాకు, పశుగ్రాసం వంటి ఆహారేతర పంటలు సాగు చేయబడ్డాయి.

నీటి పారుదల తక్కువ మోతాదులో ఉన్న ప్రాంతాలలో ఖరీఫ్ (యాసంగి) కాలంలో ఆహారేతర పంటలలో పత్తి ప్రముఖంగా సాగుచేయబడుతుంది. 2017-18లో 23.45 లక్షల హెక్టార్లలో ఆహారేతర పంటలు సాగుచేయబడ్డాయి.

2018 – 19లో ఆహార, ఆహారేతర పంటల సాగుభూమి :
తెలంగాణలో 2018-19 సంవత్సరంలో ఖరీఫ్, రబీ కాలంలో సాగులో ఉన్న స్థూల పంట సాగు భూమి 57.75 లక్షల హెక్టార్లు. ఖరీఫ్ కాలంలో సాగుచేయబడిన 45 లక్షల హెక్టార్ల భూమిలో 2018-19 సంవత్సరంలో 53, 9 శాతం ఆహార పంటలు కాగా 46.1 శాతం ఆహారేతర పంటలు. అయితే రబీ సీజన్ లో మాత్రం సాగుచేసిన భూమి 12.75 లక్షల హెక్టారులలో ఆహార పంటల భూవిస్తీర్ణం 11.07 లక్షల హెక్టార్లు (87 శాతం).

మనుగడలో లేదా అమలులో ఉన్న భూకమతాలు :
తెలంగాణ రాష్ట్రంలో 2010-11లో మనుగడలో గల సగటు కమతం పరిమాణం 1.12 హెక్టార్లు కాగా ఇది 2015-16 నాటికి 1.00 హెక్టారు (2.47105 ఎకరాలు). గమనించదగ్గ విషయమేమిటంటే మనుగడలో గల మొత్తం కమతాలలో ఉపాంత, చిన్న కమతాలు మొత్తం కమతాలలో 80 శాతం. అయితే 2010-11ని 2015– 16తో పోల్చగా 2015-16 లో మాధ్యమిక, పెద్ద కమతాల పరిమాణం తగ్గింది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

వ్యవసాయ రంగానికి సంబంధించి తెలంగాణ ప్రభుత్వ ప్రధాన పథకాలు :

a) రైతు బంధు :
రుణ భారం నుంచి విముక్తి కల్పిచేందుకు వీలుగా ఒక పెట్టుబడి రూపంలో సహకారాన్ని అందించి రైతుల సాధికారితను పెంచే ఉద్దేశంతో తెలంగాణ ప్రభుత్వం రూపొందించిన పథకమే రైతు బంధు. 2018, మే 10వ తేదిన ఈ పథకం ప్రారంభించబడ్డది.

2019-20 సంవత్సరం నుంచి తెలంగాణ ప్రభుత్వం ఈ రకమైన పెట్టుబడి సహకారాన్ని ప్రతి సీజను రూ. 4,000 ఎకరం నుంచి రూ.5,000 లకు పెంచింది.

b) రైతు బీమా :
2018, ఆగష్టు 15న తెలంగాణ ప్రభుత్వం ఈ పథకాన్ని ప్రారంభించింది. రోగగ్రస్తుడైన రైతు మరణిస్తే, అతని కుటుంబ సభ్యులు లేదా అతనిపై ఆధారపడిన వారికి ఆర్థికపరమైన భద్రతను కల్పించడం ఈ పథకం ప్రధాన ఉద్దేశం. ఈ పథకం కింద ప్రతి రైతుకు రూపాయలు 5 లక్షల బీమా కవరేజి ఉంటుంది.

ప్రశ్న 4.
తెలంగాణ పారిశ్రామికాభివృద్ధిని వివరిచండి.
జవాబు.
తెలంగాణలో పారిశ్రామిక రంగం :
దేశంలో గల ప్రధాన పారిశ్రామిక రాష్ట్రాలలో ఒకటిగా తెలంగాణ అరన స్థానాన్ని, జోడించిన స్థూల దేశీయోత్పత్తి విలువలో 8వ స్థానాన్ని కలిగియున్నది. జోడించిన స్థూల రాష్ట్ర ప్రాంతీయోత్పత్తి విలువలో పారిశ్రామిక రంగం వాటా 2018-19 (మొదటి సవరించిన అంచనా) ప్రస్తుత ధరలలో 17.4% (స్థిర ధరలలో 19.9 శాతం) కాగా 2019- 20 (ముందస్తు అంచనా) లో 16.2 శాతం (స్థిర ధరలలో 18.7 శాతం).

పరిశ్రమల వార్షిక సర్వే (Annual Survey of Industries) దత్తాంశం ప్రకారం, తెలంగాణ రాష్ట్రంలో 2008-09 లో . పరిశ్రమల సంఖ్య 7,357 కాగా ఈ సంఖ్య 2012-13లో 10,279 కి, 2013-14లో 11,068 కి 2014-15 లో 11,995 కి, 2015-16 లో 12,353 కి పెరిగింది.

తెలంగాణలో సూక్ష్మ, చిన్న, మధ్యతరహా పరిశ్రమలు (MSME) :
సూక్ష్మ, చిన్న, మధ్య మిక పరిశ్రమలు (Micro, Small and Medium Enterprises – MSME), పెద్ద తరహా పరిశ్రమలకు అవసరమైన ఉత్పాదకాలను సప్లయ్ చేసే అనుషంగిక పరిశ్రమలుగా పనిచేస్తూ రాష్ట్రంలో సంతులిత ప్రాంతీయాభివృద్ధికి, సమ్మిళిత వృద్ధికి తోడ్పడతాయి. తక్కువ మూలధనం, తక్కువ స్థాయి నైపుణ్యంగల పారిశ్రామిక యూనిట్ల ద్వారా ఉద్యోగ కల్పనలో కీలక పాత్రను కలిగి ఉంటాయి.

తెలంగాణ ప్రత్యేక రాష్ట్రంగా అవతరించిన నాటి నుంచి MSME యూనిట్ల స్థాపనలో గణనీయ పెరుగుదల సంభవించింది. జనవరి 2015 నాటికి MSME లు 8,435 కు పెరిగి రూ. 11,847 కోట్లతో 1.59 లక్షల మందికి ఉద్యోగావకాశాలు కల్పించాయి.

తెలంగాణ రాష్ట్ర నూతన పారిశ్రామిక విధానం:
దేశ 29 వ రాష్ట్రంగా అవతరించిన అనంతరం తెలంగాణ ప్రభుత్వం తన “పారిశ్రామిక విధానం-2014” ను ప్రకటించింది. ఇందులో రాష్ట్రంలో పారిశ్రామికీకరణకు ఒక నినాదాన్ని తన విజన్ గా ప్రకటించింది. ఆ నినాదం : “పరిశోధన సుంచి నవకల్పన, నవకల్పన నుంచి పరిశ్రమ, పరిశ్రమ నుంచి సౌభాగ్యం”. ఒక్క మాటలో చెప్పాలంటే ఈ నినాదపు ముఖ్య లక్ష్యం – “ఆవిష్కరించు, ఆరంభించు, సంలీనించు”.

అవస్థాపనా సౌకర్యాలను కల్పిస్తూ. ఎలాంటి ఇబ్బందులు కలగకుండా తగిన సౌకర్యాల కల్పన ద్వారా తెలంగాణలో పెట్టుబడులకు అనువైన వాతావరణాన్ని కల్పించి సులభ రీతిలో వ్యాపారం కొనసాగించే విధంగా చర్యలు చేపట్టడం ఈ విధానపు ప్రధాన లక్ష్యం.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 5.
TS GENCO, TS TRANSCO లపై వ్యాఖ్యానించండి.
జవాబు.
(a) తెలంగాణ రాష్ట్ర విద్యుత్ ఉత్పత్తి కార్పోరేషన్ TSGENCO : 1.7, 2019 నాటికి తెలంగాణలో TSGENCOతో కలిపి విద్యుత్ కాంట్రాక్టెడ్ కెపాసిటీ 16,201 MM. ఇందులో ప్రైవేటు రంగం వాటా 7,739 MW, రాష్ట్ర వాటా 5,826 MW, కేంద్ర రంగం వాటా 2,536 MW, అంతర్రాష్ట్ర 76 MW, ఉమ్మడి రంగ వాటా 25 MW, TSGENCO కెపాసిటీ అయిన 5,825 MW లలో థర్మల్ విద్యుత్తు 3,382. 50MW, హైడల్ విద్యుత్తు 2,441.76 MV, సోలార్ విద్యుత్తు 1 MW.

తెలంగాణలో విద్యుత్తు డిమాండ్లో పెరుగుదలను దృష్టిలో ఉంచుకొని TSGENC0, 5,080 MW లతో రెండు కొత్త ధర్మల్ యూనిట్లను ప్రతిపాదించింది. అవి : భదాద్రి థర్మల్ పవర్ సెక్షన్ 4 × 270 MW ; యాదాద్రి ధర్మల్ పవర్ స్టేషన్ – 5 × 800 MW.

(b) విద్యుత్ ప్రసారం, పంపిణీ :
తెలంగాణ ప్రత్యేక రాష్ట్రంగా అవతరించిన తరవాత విద్యుత్తు ప్రసారం, పంపిణీ కొరకు TS TRANSCO ను నెలకొల్పింది. ప్రస్తుతం 112 FIT స్టేషన్లు, 833, 33/11 KVA ఉప కేంద్రాలు, 2.54 లక్షల పంపిణీ ట్రాన్స్ఫార్మర్లు. రాష్ట్రంలో ఉన్నాయి.

తెలంగాణ రాష్ట్రంలో గల ప్రధాన విద్యుదుత్పత్తి కేంద్రాలు :
నేషనల్ థర్మల్ పవర్ కార్పోరేషన్ (NTPC), కరీంనగర్ జిల్లాలోని రామగుండంలో ఉంది. కొత్తగూడెం థర్మల్ పవర్ కార్పోరేషన్ (KTPC) పాల్వంచ, ఖమ్మం జిల్లాలో, కాకతీయ థర్మల్ పవర్ కార్పోరేషన్ భూపాలపల్లిలో ఉండగా కొన్ని హైడల్ విద్యుత్తు ఉత్పత్తి కేంద్రాలు నాగార్జున సాగర్, పోచంపాడు, సింగూర్, నిజాం సాగర్, పులిచింతలలలో ఉన్నాయి. 2013-14లో రాష్ట్రంలో 2,482 MW విద్యుత్తు కొరత ఉండేది.

విద్యుత్తు డిమాండ్ 47,428 MW కాగా అందుబాటులో ఉన్నది 44,946 MW. 2014-15లో విద్యుత్తు డిమాండ్ 50,916 MW కాగా అందుబాటులో ఉండింది 48,788 MW.

విద్యుచ్ఛక్తి పంపిణీకి సంబంధించి తెలంగాణలో రెండు కంపెనీలు పనిచేస్తున్నాయి. అవి :
తెలంగాణ రాష్ట్ర దక్షిణ ప్రాంత విద్యుత్ పంపిణీ కంపెనీ లిమిటెడ్ (TSSPDCL), తెలంగాణ రాష్ట్ర ఉత్తర ప్రాంత విద్యుత్ పంపిణీ లిమిటెడ్ (TSNPDCL). 1.12.2019 నాటికి రాష్ట్రంలో 1.53 కోట్ల విద్యుత్ కనెక్షన్లు ఉన్నాయి. ఇందులో 73 శాతం విద్యుత్ వినియోగం గృహ వినియోగం
రూపంలో కలదు.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 6.
రాష్ట్రంలో విద్యతీరు తెన్నులను క్లుప్తంగా వ్యాఖ్యానించండి.
జవాబు.
తెలంగాణలో విద్య :
దేశంలో మానవ వనరులు, ఆర్థికాభివృద్ధి బలోపేతం కావడానికి విద్యను ప్రధాన సాధనంగా భావించాలి. ఉత్పాదక శ్రామిక శక్తిని పెంపొందించడంలో విద్య కీలక పాత్ర పోషిస్తుంది. భారత రాజ్యాంగంలోని 45 వ నిబంధన ప్రకారం 6 నుంచి 14 సంవత్సరాల మధ్య వయస్సు గల బాలబాలికలకు ఉచిత, నిర్బంధ విద్యను అందించడం రాష్ట్రాల బాధ్యత.

తెలంగాణలో అక్షరాస్యత రేటు :
2011 జనాభా లెక్కల ప్రకారం తెలంగాణలో అక్షరాస్యత రేటు 66.54 శాతం. అయితే పట్టణ-గ్రామీణ, అంతర్ జిల్లా, వయస్సు వారీ జనాభా, స్త్రీ-పురుషులు, సామాజిక వర్గాల పరంగా అక్షరాస్యత రేటులో తేడాలున్నాయి. రాష్ట్రంలో విద్యా రంగం స్థితి :

a) నమోదు(Enrollment) :
2017-18 సంవత్సరంలో అన్ని పాఠశాలలు కలిపి 58.71 లక్షల విద్యార్థులు నమోదు చేసుకొన్నారు. ఇందులో 53 శాతం ప్రైవేటు పాఠశాలల నమోదు కాగా మిగితా 47 శాతం ప్రభుత్వ పాఠశాలల నమోదు.

b) స్థూల నమోదు నిష్పత్తి (Gross Enrollment Ration-GER) :
స్థూల నమోదు నిష్పత్తి (GER) విశ్వవిద్యాలయాలు, కళాశాలలు, పాఠశాలలో విద్యార్థుల నమోదు సంఖ్యను నిర్ణయిస్తుంది. GER 2017-18లో ప్రాథమిక పాఠశాలలో బాలురు – 98.76 శాతం, బాలికలు -. 98.05 శాతం కాగా ఉచ్ఛతర ప్రాథమిక పాఠశాలలో బాలురు – 87.32 శాతం, బాలికలు 88.4 శాతం.

c) విద్యార్థి – ఉపాధ్యాయ నిష్పత్తి (Pupil – Teacher Ratio – PTR) :
ఇది ఒక విద్యా సంవత్సరంలో ప్రత్యేక విద్యా స్థాయికి సంబంధించి ఎంత మంది విద్యార్థులకు ఒక ఉపాధ్యాయుడు ఉంటాడనే విషయాన్ని తెలుపుతుంది. PTR, 2018-19లో రాష్ట్రంలో ప్రాథమిక స్థాయిలో 18.90, ఉచ్ఛతర ప్రాథమిక స్థాయి 14.12, సెకండరీ స్థాయిలో 17.85 గా ఉంది. రాష్ట్రం మొత్తానికి 2018-19లో PTR 17.67.

పాఠశాల విద్య :
i) సమగ్ర శిక్షా అభియాన్:
గతంలో కేంద్ర ప్రభుత్వ ప్రాయోజిత పథకాలైన

  1. సర్వ శిక్షా అభియాన్ (SSA) సార్వత్రిక ప్రాథమిక విద్యను అమలు పరుస్తూండగా
  2. రాష్ట్రీయ మాధ్యమిక శిక్షా అభియాన్ (RMSA) సెకండరీ విద్యలో సామీప్యత (acess), ప్రమాణం (quality) లో పెంపుదలకు అమలు చేసింది.

ii) కస్తూర్బా గాంధీ బాలికా విద్యాలయం :
వీటిని 2004-05 లో రెసిడెన్షియల్ పాఠశాల సౌకర్యం కల్పించే ఉద్దేశంతో నెలకొల్పారు. నీటిలో ప్రవేశానికి అర్హతలు : SC, ST, BC, మైనారిటీ వర్గాలకు సంబంధించిన

  1. VI నుంచి VII తరగతులు వారికి,
  2. అనాధలు,
  3. బడి మానేసిన ఒంటరి తల్లి/తండ్రి కలిగిన విద్యార్థులు

iii) ఆదర్శ పాఠశాలలు :
194 ఆదర్శ పాఠశాలలు రాష్ట్రంలో 2013-14లో స్థాపించబడ్డాయి. వీటిలో అధిక విద్యార్హతలున్న ఉపాధ్యాయులచే ఇంగ్లీషు మీడియంలో విద్యా బోధన జరుగుతుంది. ఈ వథకం రద్దయినందువలన తెలంగాణ ప్రభుత్వం వీటి బాధ్యత తీసుకొని 2015-16 నుంచి వీటిని కొనసాగిస్తున్నది.

ఇంటర్మీడియట్ విద్య :
ప్రస్తుతం రాష్ట్రంలో 2,558 జూనియర్ కళాశాలలు ఉండగా వాటిలో విద్యార్థుల సంఖ్య 7.18 లక్షలు. 2,558 జూనియర్ కళాశాలలో, 404 ప్రభుత్వ, 4 వొకేషనల్, 41 ప్రైవేట్ ఎయిడెడ్, 1,583 ప్రైవేట్ మరియు ఇతర జూనియర్ కళాశాలలు కాగా 530 ఇతర ప్రభుత్వ సంస్థలు. ఈ బోర్డు ఉపాధిని కల్పించేందుకు వీలయిన 23 వొకేషనల్ కోర్సులను ఇంటర్మీడియట్ స్థాయిలో ప్రవేశపెట్టింది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ఉన్నత విద్య:

a) కళాశాల విద్య :
కళాశాల విద్య డిపార్ట్ మెంట్ యొక్క ప్రధాన లక్ష్యం ఉన్నత విద్యలో సామీప్యత (access), సమానత (equality), నాణ్యత (quality) ను సాధించుట. ఇందుకోసం కేంద్ర ప్రభుత్వ ప్రాయోజిత పథకమైన రాష్ట్రీయ ఉచ్ఛతర శిక్షా అభియాన్ (RUSA) నుంచి నిధుల సమీకరణకు తెలంగాణ ప్రభుత్వం కృషి చేస్తున్నది.

b) డిగ్రీ ఆన్లైన్ సర్వీసెస్ తెలంగాణ (DOST) :
డిగ్రీ కళాశాలలో బి.ఎ/బి.కాం/బి.యస్సీ/బి.బి.ఎ వండి డీగ్రీ కోర్సులలో ప్రవేశాలను తెలంగాణ ప్రభుత్వం 2016 సంవత్సరం నుంచి DOST ద్వారా కల్పిస్తున్నది. 2018 – 19లో డిగ్రీ కళాశాలలో 2,00,472 మంది విద్యార్థులు ప్రవేశాన్ని పొందగా ఇందులో 42,688 విద్యార్థులు ప్రభుత్వ కళాశాలలో ప్రవేశాన్ని పొందారు.

c) సాంకేతిక విద్య :
సాంకేతిర విద్యా డైరెక్టరేట్ రాష్ట్రంలో పాలిటెక్నిక్, వృత్తి విద్యలను పర్యవేక్షిస్తుంది. ఇది ప్రభుత్వ, ప్రైవేటు, ఎయిడెడ్ రంగాలలలో ప్రవేశాలు, విద్యా బోధనను పర్యవేశిస్తుంది. ప్రస్తుతం రాష్ట్రంలో 820 డిప్లమో డిగ్రీలో యుక్తమైన కళాశాలలు 1,36,805 విద్యార్థులతో పనిచేస్తున్నాయి.

సాంఘిక సంక్షేమ విద్యా సంస్థలు :
SC, ST, BC, మైనారిటీ, వికలాంగ బాలబాలికలక సమీప ప్రాంతాలలో విద్యా సంస్థలు ఉండే విధంగా చూని సాంఘిక సమానత్వ సాధనకు ప్రభుత్వం సాంఘిక సంక్షేమ విద్యా సంస్థలను నెలకొల్పింది. ఈ సంస్థలు రెసిడెన్షియల్ రూపంలో ఉండి విద్యార్థులకు ఉచిత హాస్టల్ వసతితో బాటు పాఠ్యపుస్తరాల పంపిణీ చేస్తాయి.

A) షెడ్యూల్డ్ కులాల రెసిడెన్షియల్ పాఠశాలలు :
తెలంగాణ సాంఘిక సంక్షేమ రెసిడెన్నియల్ విద్యా సంస్థల సొసైటి (TSWREIS) రాష్ట్రంలో 269 రెసిడెన్షియల్ విద్యా సంస్థలను నడుపుచున్నది. ఇందులో 175 బాలికలకు సంబంధించినవి. వీటిలో 5వ తరగతి నుండి డిగ్రీ వరకు షెడ్యూల్డ్ కులాలకు చెందిన విద్యార్థులకు ప్రవేశం కలదు. ప్రస్తుతం 268 విద్యా సంస్థలు ఉండగా అందులో 134 తెలంగాణ ఏర్పడిన తరువాత ప్రారంభించబడ్డాయి.

B) షెడ్యూల్డ్ తెగల రెసిడెన్షియల్ పాఠశాలలు :
a) తెలంగాణ గిరిజన సంక్షేమ రెసిడెన్షియల్ విద్యా సంస్థల సొసైటీ (TTWRESIS) – గురుకులాలు :
రాష్ట్రంలో ఈ గురుకులాలు 175 ఉన్నాయి.

b) ఆశ్రమ పాఠశాలలు :
రాష్ట్రంలో ప్రస్తుతం 321 ఆశ్రమ పాఠశాలలు ఉన్నాయి.

c) ప్రభుత్వ ప్రాథమిక పాఠశాలలు :
గిరిజన సంక్షేమ శాఖ 1,427 ప్రాథమిక పాఠశాలలను నిర్వహిస్తున్నది.

C) వెనుకబడిన తరగతులు సంక్షేమ రెసిడెన్షియల్ పాఠశాలలు :
మహాత్మా జ్యోతిబా పూలే తెలంగాణ వెనకబడిన తరగతుల సంక్షేమ రెసిడెన్షియల్ సంస్థల సొసైటీ (M,JPTBCWREIS) వెనకబడిన తరగతులు, ఆర్థికంగా వెనకబడిన తరగతుల వారికి విద్యను అందించుటకు స్థాపించారు.

ఒక రెసిడెన్షియల్ డిగ్రీ కళాశాలను నడుపుతున్నది. ఈ విద్యా సంస్థలలో దాదాపు 99,360 విద్యార్థులు విద్యను అభ్యసిస్తున్నారు.

D) మైనారిటీ రెసిడెన్షియల్ విద్యా సంస్థలు :
మైనారిటీ వర్గాలకు చెందిన బాలబాలికలకు అధిక నాణ్యతతో కూడిన విద్యను అందించుటకు రాష్ట్ర ప్రభుత్వం తెలంగాణ మైనారిటీల రెసిడెన్షియల్ విద్యా సంస్థల సొసైటీ (TMREIS) ని స్థాపించింది. ప్రస్తుతం రాష్ట్రంలో 216 మైనారిటీ విద్యా సంస్థలు 12 కళాశాలలతో కలిపి 79,424 విద్యార్థులకు విద్యను కల్పిస్తున్నాయి.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

II. తెలంగాణలో ఆరోగ్య రంగం :
‘అందరికీ ఆరోగ్యం’ అనే ప్రపంచ ఆరోగ్య సంస్థ (WHO) లక్ష్యాన్ని చేరుకోవడానికి తెలంగాణ ప్రభుత్వం వివిధ కార్యక్రమాలను చేపట్టింది. జాతీయ ప్రసూతి లబ్ది పథకం (National Maternity Benefit Programme), సమగ్ర శిశు అభివృద్ధి పథకం, పిల్లల కోసం బాలికా సమృద్ధి యోజన పథకం, పునరుత్పత్తి కలిగిన మహిళలకు సప్లిమెంటరీ న్యూట్రీషన్ పథకాన్ని అమలు చేస్తున్నది.

‘సామాజిక, ఆర్థిక దృక్పథం 2020’ ప్రకారం తెలంగాణ రాష్ట్రంలో 4,797 ఆరోగ్య ఉప కేంద్రాలు, 633 ప్రాథమిక ఆరోగ్య కేంద్రాలు, 249 పట్టణ ప్రాథమిక ఆరోగ్య కేంద్రాలు, 90 కమ్యూనిటీ ఆరోగ్య కేంద్రాలు, 19 ఏరియా ఆసుపత్రులు, 29 జిల్లా కేంద్ర ఆసుపత్రులు, 9 వైద్య కళాశాల ఆసుపత్రులు, 12 స్పెషాలిటీ ఆసుపత్రులు, 2 సూపర్ స్పెషాలిటీ ఆసుపత్రులు ఉన్నాయి.

ఆరోగ్య రంగంలో తెలంగాణ ప్రభుత్వం అమలు పరుస్తున్న పథకాలు : రాష్ట్రావతరణ అనంతరం తెలంగాణ ప్రభుత్వం ఆరోగ్య రంగంలో అనేక పథకాలను రూపొందించి అమలు పరుస్తున్నది. అందులో ముఖ్యమైనవి.

a) కంటి వెలుగు :
సామాన్యంగా ప్రజలు ప్రత్యేకించి మహిళలు, వృద్ధులు కంటి సమస్యలను వాయిదా వేయడం లేదా ఆ సమస్యలను కొనసాగిస్తూనే జీవనాన్ని గడుపుతుంటారు. ఈ సమస్య నివారణ కోసమే తెలంగాణ ప్రభుత్వం కంటి వెలుగు పథకాన్ని రూపొందించి అమలుపరుస్తున్నది.

b) బస్తీ దవాఖాన :
పట్టణ ప్రాంతాలలో ప్రామాణికతతో కూడిన ఆరోగ్య సేవలు అందించుటకు బస్తీ దవాఖానాలు స్థాపించారు. ప్రతి బస్తీ దవాఖాన 6,000 నుండి 10,000 జనాభా ఉన్న ప్రాంతాలకు సేవలందిస్తుంది. పట్టణ మురికినాడలలో వీటిని స్థాపిస్తారు. రాష్ట్రంలో 104 బస్తీ దవాఖానాలు పనిచేస్తున్నాయి.

c) ఆరోగ్య, వెల్నెస్ కేంద్రాలు :
ఇవి సమగ్ర ఆరోగ్య సేవలతో బాటు ప్రసూతి, చిన్న పిల్లల ఆరోగ్య రక్షణ సేవలను అందిస్తున్నాయి. వైద్య సేవలు, అవసరమైన ఔషధాలను ఇవి ఉచితంగా పంపిణీ చేస్తాయి. రాష్ట్రంలో 636 ప్రాథమిక ఆరోగ్య కేంద్రాలు, 86 ఉపకేంద్రాలు, 104 బస్తీ దవాఖానాలు, 227 పట్టణ ప్రాథమిక ఆరోగ్య కేంద్రాలు ఆరోగ్య వెల్నెస్ కేంద్రాలుగా పనిచేస్తున్నాయి.

d) తెలంగాణ వైద్య విధాన పరిషత్ (TVVP) ఆసుపత్రులు :
తెలంగాణ వైద్య విధాన పరిషత్ ఆధ్వర్యంలో 107 TVVP ఆసుపత్రులు పనిచేస్తున్నాయి. ఇవి ప్రసూతి, చిన్న పిల్లల ఆరోగ్య రక్షణ సేవలు, సాధారణ వైద్య సేవలు, సర్జరీలు, ఆప్తమాలజీ, పీడియాట్రిక్స్, ఆర్థోపెడిక్స్, డెర్మటాలజీ, ENT మొదలైన సేవలను అందిస్తాయి.

e) ఆయుష్ (ఆయుర్వేద, యోగ, నాచురోపతి, యునాని, హోమియోపతి) :
తెలంగాణ ప్రభుత్వం, జాతీయ ఆయుష్ మిషన్ సహకారంతో రాష్ట్రంలో ఆయుష్ పద్ధతి వైద్యాన్ని ప్రోత్సహిస్తున్నది. ఆయుష్ శాఖ కింద రాష్ట్రంలో 860 దవాఖానాలు పనిచేస్తున్నాయి.

f) ఆరోగ్య శ్రీ :
‘ఆరోగ్యశ్రీ ఆరోగ్య రక్షణ ట్రస్టు’ ద్వారా రాష్ట్రంలో ఆరోగ్యశ్రీ అనే ఒక ఏకైక పథకం ఆరోగ్య బీమాతో అమలవుతుంది. దీని ప్రధాన ఆశయం పేదరిక రేఖకు దిగువన ఉన్న వారికి వైద్య సేవలను అందించడం. ఈ పథకం ద్వారా పేద వారికి ఎంపిక చేయబడిన వ్యాధులకు నగదు రహిత సేవలు అందించబడతాయి.

g) KCR కిట్ :
ఈ పథకాన్ని తెలంగాణ ప్రభుత్వం జూన్ 2, 2017 న ప్రారంభించింది. పేదరికపు రేఖకు దిగువన ఉండి ప్రభుత్వ ఆరోగ్య కేంద్రాల నుంచి ఆరోగ్య సేవలు పొందే గర్భిణీ స్త్రీలకు, మగశిశువు జన్మిస్తే రూ. 12,000, ఆడశిశువు జన్మిస్తే రూ. 13,000 సహాయం అందించబడుతుంది.

ప్రశ్న 7.
తెలంగాణ రాష్ట్రంలో రెసిడెన్షియల్ విద్యాసంస్థల స్థితిని, అవకాశాలను చర్చించండి.
జవాబు.
ఆర్థిక వ్యవస్థలో గల వివిధ రంగాలు ప్రదర్శించిన వృద్ధి రేట్లు ఆ వ్యవస్థ యొక్క వృద్ధి ధోరణిని తెలుపుతాయి. ఆర్థిక వ్యవస్థలో గల వివిధ రంగాలను 16 రంగాలుగా విభజించినప్పటికీ సులభంగా గ్రహించుట కొరకు వీటిని స్థూలంగా మూడు రంగాలుగా వర్గీకరిస్తారు.
అవి : ప్రాథమిక, ద్వితీయ, గౌణ రంగాలు. ఈ రంగాల వృద్ధి రేట్లను ప్రాథమిక ధరలలో జోడించిన స్థూల ఉత్పత్తి విలువ (GVA) తో సూచిస్తారు.

a) ప్రాథమిక రంగం :
ఈ రంగంలో పంటలు, పశుసంపద, అడవులు, మత్స్య పరిశ్రమ, గనులు మొదలైనవి.

b) ద్వితీయ రంగం :
ఇందులో తయారీ రంగం, గ్యాస్, నీటి సరఫరా, ఇతర అనుబంధ సేవలు మొదలైనవి.

c) గౌణ రంగం :
ఇందులో వ్యాపారం రిపేర్ సేవలు, హోటళ్ళు, రెస్టారెంటులు, రవాణా (రైల్వే రోడ్ వే, నౌకాయానం, విమానయానం మొ.||) నిలువ (storage), కమ్యూనికేషన్, బ్రాడ్కాస్టింగ్, ఆర్థిక సేవలు, స్థిరాస్థి రంగం, ప్రభుత్వ పాలన మొదలైనటువంటివి ఉంటాయి.

ఆర్థిక వ్యవస్థలో వివిధ రంగాల విశ్లేషణ ఆ వ్యవస్థలో ఆయా రంగాల పని తీరుని తెలుపుటకు, ఆర్థిక స్థితిగతుల అంచనాకు తోడ్పడుతుంది. అంతేగాక ప్రస్తుత సంవత్సరంలో ఆర్థికవ్యవస్థలో ఆయా రంగాలు ఏ విధమైన పనితీరును కనబరచాయో, రాబోయే కాలంలో ఏ విధంగా పనిచేయగలవో తెలుసుకొనుటకు వీలవుతుంది.

ప్రాథమిక రంగం వృద్ధి రేటు 2012-13లో 21.9 శాతం (స్థిర ధరలో 8.6 శాతం) నుంచి 2015-16 లో కేవలం 2.2 శాతానికి (స్థిర ధరలలో 58 శాతం) తగ్గగా 2016-17 నాటికి 17.1 శాతానికి పెరిగి తిరిగి 2019-20 (AE)లో 15.8 శాతానికి (స్థిర ధరలలో 10.7 శాతం) తగ్గింది.

ఈ విధంగా ప్రాథమిక రంగంలో మిశ్రమ వార్షిక సగటు వృద్ధి రేట్లు నమోదగుటను గమనించవచ్చు. 2012-13, 2014-15 సంవత్సరాలలో ద్వితీయ రంగం రుణాత్మక వృద్ధి రేటును చవిచూడగా 2015-16 లో అత్యధిక వృద్ధి రేటు అనగా 20.3 శాతం (స్థిర ధరలలో 21.4 శాతం) ను నమోదు చేసుకొన్నది.

2019-20 (AE) ప్రకారం ఈ రంగంలో 5.3 శాతం వృద్ధిరేటు నమోదయింది. 2012-13 నుంచి 2019-20 మధ్య కాలంలో గౌణ రంగపు వృద్ధి రేటు 18.4 శాతం నుంచి 14.1 శాతం (స్థిర ధరలలో 8.4 శాతం నుంచి 9.6 శాతం) మధ్య కొనసాగింది. మొత్తానికి తెలంగాణ రాష్ట్ర ఆర్థిక వ్యవస్థలో ప్రస్తుత, స్థిర ధరలలో జోడించిన స్థూల రాష్ట్ర ఉత్పత్తి విలువ వృద్ధి రేటులో మిశ్రమ ధోరణిని చూడవచ్చు.

జోడించిన స్థూల రాష్ట్ర ఉత్పత్తి విలువ (GSVA) లో వివిధ రంగాల వాటా :
GSVA లో గౌణ రంగం లేదా సేవల రంగం వాటా 2011-12లో 52.8 శాతం నుంచి 2019-20 (AE) నాటికి 65.2 శాతానికి పెరగగా, ప్రాథమిక రంగం లేదా వ్యవసాయ రంగం దాని అనుబంధ రంగాల వాటా ఇదే కాలంలో 19.6 శాతం నుంచి 18.6 శాతానికి తగ్గగా, ద్వితీయ రంగం లేదా పారిశ్రామిక రంగం వాటా 27.6 శాతం నుంచి 16.2 శాతానికి తగ్గింది. తెలంగాణ రాష్ట్రపు GSVAలో ప్రాథమిక, ద్వితీయ రంగాల వాటా అస్థిర రూపంలో ఉండగా, గౌణ రంగం లేదా సేవల రంగం వాటా స్థిరంగా ఉండటాన్ని గమనించవచ్చు.

ప్రశ్న 8.
తెలంగాణ రాష్ట్ర ఆరోగ్య రంగ కార్యక్రమాలను విశదీకరించండి.
జవాబు.
తెలంగాణలో ఆరోగ్య రంగం : ‘అందరికీ ఆరోగ్యం’ అనే ప్రపంచ ఆరోగ్య సంస్థ (WHO) లక్ష్యాన్ని చేరుకోవడానికి తెలంగాణ ప్రభుత్వం వివిధ కార్యక్రమాలను చేపట్టింది. జాతీయ ప్రసూతి లబ్ది పథకం (National Maternity Benefit Programme), సమగ్ర శిశు అభివృద్ధి పథకం, పిల్లల కోసం బాలికా సమృద్ధి యోజన పథకం, పునరుత్పత్తి కలిగిన మహిళలకు సప్లిమెంటరీ న్యూట్రీషన్ పథకాన్ని అమలు చేస్తున్నది.

”సామాజిక, ఆర్థిక దృక్పథం – 2020′ ప్రకారం తెలంగాణ రాష్ట్రంలో 4,797 ఆరోగ్య ఉప కేంద్రాలు, 633 ప్రాథమిక ఆరోగ్య కేంద్రాలు, 249 పట్టణ ప్రాథమిక ఆరోగ్య కేంద్రాలు, 90 కమ్యూనిటీ ఆరోగ్య కేంద్రాలు, 19 ఏరియా ఆసుపత్రులు, 29 జిల్లా కేంద్ర ఆసుపత్రులు, 9 వైద్య కళాశాల ఆసుపత్రులు, 12 స్పెషాలిటీ ఆసుపత్రులు, 2 సూపర్ స్పెషాలిటీ ఆసుపత్రులు ఉన్నాయి.

ఆరోగ్య రంగంలో తెలంగాణ ప్రభుత్వం అమలు పరుస్తున్న పథకాలు :
రాష్ట్రావతరణ అనంతరం తెలంగాణ ప్రభుత్వం ఆరోగ్య రంగంలో అనేక పథకాలను రూపొందించి అమలు పరుస్తున్నది. అందులో ముఖ్యమైనవి.

a) కంటి వెలుగు :
సామాన్యంగా ప్రజలు ప్రత్యేకించి మహిళలు, వృద్ధులు కంటి సమస్యలను వాయిదా వేయడం లేదా ఆ సమస్యలను కొనసాగిస్తూనే జీవనాన్ని గడుపుతుంటారు. ఈ సమస్య నివారణ కోసమే తెలంగాణ ప్రభుత్వం కంటి వెలుగు పథకాన్ని రూపొందించి అమలుపరుస్తున్నది.

b) బస్తీ దవాఖాన :
పట్టణ ప్రాంతాలలో ప్రామాణికతతో కూడిన ఆరోగ్య సేవలు అందించుటకు బస్తీ దవాఖానాలు స్థాపించారు. ప్రతి బస్తీ దవాఖాన 6,000 నుండి 10,000 జనాభా ఉన్న ప్రాంతాలకు సేవలందిస్తుంది. పట్టణ మురికినాడలలో వీటిని స్థాపిస్తారు. రాష్ట్రంలో 104 బస్తీ దవాఖానాలు పనిచేస్తున్నాయి.

c) ఆరోగ్య, వెల్నెస్ కేంద్రాలు :
ఇవి సమగ్ర ఆరోగ్య సేవలతో బాటు ప్రసూతి, చిన్న పిల్లల ఆరోగ్య రక్షణ సేవలను అందిస్తున్నాయి. వైద్య సేవలు, అవసరమైన ఔషధాలను ఇవి ఉచితంగా పంపిణీ చేస్తాయి. రాష్ట్రంలో 636 ప్రాథమిక- ఆరోగ్య కేంద్రాలు, 86 ఉపకేంద్రాలు, 104 బస్తీ దవాఖానాలు, 227 పట్టణ ప్రాథమిక ఆరోగ్య కేంద్రాలు ఆరోగ్య వెల్నెస్ కేంద్రాలుగా పనిచేస్తున్నాయి.

d) తెలంగాణ వైద్య విధాన పరిషత్ (TVVP) ఆసుపత్రులు :
తెలంగాణ వైద్య విధాన పరిషత్ ఆధ్వర్యంలో 107 TVVP ఆసుపత్రులు పనిచేస్తున్నాయి. ఇవి ప్రసూతి, చిన్న పిల్లల ఆరోగ్య రక్షణ సేవలు, సాధారణ వైద్య సేవలు, సర్జరీలు, ఆప్తమాలజీ, పీడియాట్రిక్స్, ఆర్థోపెడిక్స్, డెర్మటాలజీ, ENT మొదలైన సేవలను అందిస్తాయి.

e) ఆయుష్ (ఆయుర్వేద, యోగ, నాచురోపతి, యునాని, హోమియోపతి) :
తెలంగాణ ప్రభుత్వం, జాతీయ ఆయుష్ మిషన్ జంలో ఆయుష్ పద్ధతి వైద్యాన్ని ప్రోత్సహిస్తున్నది. ఆయుష్ శాఖ కింద రాష్ట్రంలో 860 దవాఖానాలు పనిచేస్తున్నాయి.

f) ఆరోగ్య శ్రీ :
ఆరోగ్యశ్రీ ఆరోగ్య రక్షణ ట్రస్టు’ ద్వారా రాష్ట్రంలో ఆరోగ్యశ్రీ అనే ఒక ఏకైక పథకం ఆరోగ్య బీమాతో అమలవుతుంది. దీని ప్రధాన ఆశయం పేదరిక రేఖకు దిగువన ఉన్న వారికి వైద్య సేవలను అందించడం, ఈ పథకం ద్వారా పేద వారికి ఎంపిక చేయబడిన వ్యాధులకు నగదు రహిత సేవలు అందించబడతాయి.

g) KCR కిట్ :
ఈ పథకాన్ని తెలంగాణ ప్రభుత్వం జూన్ 2, 2017 న ప్రారంభించింది. పేదరికపు రేఖకు దిగువన ఉండి ప్రభుత్వ ఆరోగ్య కేంద్రాల నుంచి ఆరోగ్య సేవలు పొందే గర్భిణీ స్త్రీలకు, మగశిశువు జన్మిస్తే రూ.12,000, ఆడశిశువు జన్మిస్తే రూ. 13,000 సహాయం అందించబడుతుంది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 9.
తెలంగాణలో పేదరికం, నిరుద్యోగిత స్థితిగతులను విశ్లేషించండి.
జవాబు.
పేదరికం బహుముఖ దృగ్విషయం. ఇది సాంఘిక, ఆర్థిక, రాజకీయ, కొంతమేరకు బహిర్గత కారణాలచే ప్రభావితమౌతుంది. పేదరికమనేది ఒక సాంఘిక దృగ్విషయం. సమాజంలో గల ఒక వర్గం పౌరులు తను జీవనాన్ని గడుపుటకు కనీస అవసరాలు కూడా తీర్చుకోలేని స్థితిని సేవలికంగా నిర్వచించవచ్చు.

(a) టెందూల్కర్ నిపుణుల కమిటీ పేదరికం అంచనాలు :
1993-94లో తెలంగాణలో పేదరికపు అంచనాల కొరకు సాలుసలి తలసరి ఆదాయం గ్రామీణ ప్రాంతాలకు రూ. 11,244, పట్టణ ప్రాంతాలకు రూ. 11,282 గా ప్రమేయం చేయబడ్డది.

అదే విధంగా 2011-12 లో పేదరికపు అంచనా కొరకు సాలునరి తలసరి ఆదాయం గ్రామీణ ప్రాంతాలకు రూ.860గా పట్టణ ప్రాంతాలకు రూ.1,009 గా భావించడం జరిగింది. కమిటీ అంచనాల ప్రకారం 1993-94 నుండి 2011-12 మధ్య కాలంలో తెలంగాణలో గ్రామీణ, పట్టణ పేదరికం వరుసగా 49 శాతం, 30.5 శాతంగా ఉంది.

(b) రంగరాజన్ కమిటీ రిపోర్టు పేదరికం అంచనాలు :
పేదరికంపై రంగరాజన్ కమిటీ రిపోర్టు అంచనాల ప్రకారం 2011-12లో తెలంగాణలో పేదరికపు స్థాయి దేశం మొత్తం పేదరికపు స్థాయి కంటే చాలా తక్కువ. ఈ రిపోర్టు ప్రకారం గ్రామీణ ప్రాంతాలలో పేదరికపు స్థాయి తెలంగాణలో 9.3 శాతం కాగా దేశం మొత్తంలో అది 30.9 శాతంగా ‘అలాగే పట్టణ ప్రాంతాలలో పేదరికపు స్థాయి 11.1 తాతం కాగా దేశం మొత్తంలో అది 26.4 శాతంగా ఉంది.

తెలంగాణ రాష్ట్రంలో నిరుద్యోగిత రేట్లు :
అమలులో ఉన్న వేతనం వద్ద ఒక వ్యక్తి శారీరకంగా, మానసికంగా పనిచేయడానికి సిద్ధంగా ఉన్నప్పటికీ అతనికి ఉద్యోగ అవకాశం లభ్యం కాకపోవడాన్ని నిరుద్యోగితగా నిర్వచించవచ్చు. ఇంకొక విధంగా చెప్పాలంటే ఇది దేశంలో నిరుద్యోగుల సంఖ్య కంటే ఉద్యోగ అవకాశాల సంఖ్య తక్కువగా ఉండే స్థితిని సూచిస్తుంది.

తెలంగాణ రాష్ట్రంతో బాటు భారతదేశంలో నిరుద్యోగిత రేటు 2011-12లో తెలంగాణలో నిరుద్యోగిత రేటు భారతదేశ నిరుద్యోగిత రేటు కంటే తక్కువ. మొత్తానికి రాష్ట్రంలో పురుషులతో పోల్చినప్పుడు స్త్రీలలోనే నిరుద్యోగిత రేటు ఎక్కువ. పట్టణ, గ్రామీణ ప్రాంతాల నిరుద్యోగిత రేట్లలో కూడా ఇంచుమించు ఇదే పరిస్థితి ఉన్నది.

ప్రశ్న 10.
కాళేశ్వరం ప్రాజెక్టు ప్రాముఖ్యతను చర్చించండి.
జవాబు.
కాళేశ్వరం ప్రాజెక్టు :
కాళేశ్వరం దగ్గరలో గల మేడిగడ్డ వద్ద గోదావరి నదిపై ఒక బ్యారేజీ, మేడిగడ్డ (లక్ష్మీ బ్యారేజీ) మరియు అన్నారం వద్ద గల శ్రీపాద యెల్లంపల్లి మరియు సుందిల్ల వద్ద మరో రెండు బ్యారేజీలను నిర్మించడం.

వీటి ద్వారా కాలువలు, టన్నెల్స్, లిఫ్ట్ పద్ధతులు, రిజర్వాయర్లు, నీటి పంపిణీ వ్యవస్థలను ఉపయోగించి కమాండ్ ఏరియాలో గల 7 జిల్లాల (పునర్విభజన వలన 13 జిల్లాలకు) ఆయకట్టు తొలుత ప్రకటించిన 16,40,000 ఎకరాలకు బదులు 18,25,700 ఎకరాలకు నీటిని అందించుటకు నిర్ణయం.

దీనితో బాటు స్టేజి-1, స్టేజి-II, సింగూరు, నిజాంసాగర్ ప్రాజెక్టుల స్థిరీకరణ ద్వారా మరో 18,82,970 ఎకరాలకు (18,25,700 + 18,82,970 = 37,08,670 ఎకరాలు) నీరును అందించుట తెలంగాణ ప్రభుత్వ ధ్యేయం. వీటితో బాటు జంట నగరాలకు 20 TMC లు, నదీ పరీవాహక గ్రామాలకు 10 TMCల తాగు నీరు, పారిశ్రామిక అవసరాలకు 16 TMCల నీరు అందించాలని ప్రభుత్వం ప్రతిపాదించింది. కాళేశ్వరం ప్రాజెక్టు యొక్క మొత్తం అంచనా వ్యయం 80,000 కోట్ల రూపాయలు కాగా 31.7.2019 నాటికి 51,434 కోట్ల రూపాయలు వ్యయం చేయడం జరిగింది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 11.
తెలంగాణలో ఇంధన మార్గాలు గురించి వ్రాయండి.
జవాబు.
తెలంగాణలో ఇంధన (శక్తి) రంగం : తెలంగాణ ఆర్ధిక వ్యవస్థ వ్యవసాయాధారితం అయినందున ఇతర రాష్ట్రాలతో పోల్చితే విద్యుచ్ఛక్తి వినియోగం ఎక్కువ తెలంగాణ రాష్ట్రంలో 2017-18 లో రాష్ట్ర తలసరి విద్యుచ్ఛక్తి వినియోగం 1,727 యూనిట్లతో 13.62 శాతం వినియోగ వృద్ధి రేటును నమోదు చేసుకొన్నది.

2018-19లో భారత్ లో సగటు విద్యుత్తు వినియోగం 1,181 యూనిట్లు, ఈ వివరాల ప్రకారం తెలంగాణలో విద్యుత్తు సగటు వినియోగం, దేశ వినియోగం కంటే ఎక్కువగా ఉండటమే కాకుండా దేశంలో మొదటి స్థానంలో ఉన్నది.

2016-17లో తెలంగాణలో విద్యుత్తు వినియోగం 53,017 మిలియన్ యూనిట్లు (MU) కాగా ఇది 2017-18 లో 60,237 MUకు పెరిగింది. అదేవిధంగా విద్యుత్తు తలసరి వినియోగం 2016-17 లో 1,551 యూనిట్లు 2017-18 లో 1,727 యూనిట్లకు పెరిగింది.

ఆవిభాజ్య ఆంధ్రప్రదేశ్లో గల విద్యుత్తు స్థాపిత శక్తి (installed capacity)ని రాష్ట్ర విభజనానంతరం తెలంగాణకు 53.89 శాతం, ఆంధ్రకు 46.11 శాతంగా నిర్దేశించబడ్డది.

తదనుగుణంగా డిసెంబర్ 2016 నాటికి తెలంగాణ రాష్ట్ర స్థాపిత శక్తి కేంద్ర, రాష్ట్ర ప్రైవేటు రంగాలన్నింటిని కలిపి మొత్తం 12,295.75 MW. ‘Power Sector, జనవరి 2018, రిపోర్టు ప్రకారం 31.1.2018 నాటికి తెలంగాణ రాష్ట్ర విద్యుత్తు స్థాపిత శక్తి 14.689.46 MW; ఇందులో రాష్ట్రం వాటా 7572.65 MW, కేంద్రం వాటా 2036.85 MW, ప్రైవేటు రంగం వాటా 5079.96 MW.

ప్రశ్న 12.
తెలంగాణలో SC/ST వర్గాల సంక్షేమ పథకాల గురించి రాయండి.
జవాబు.
SC/STs వర్గాల అభివృద్ధి, సంక్షేమ పథకాలు :

i) SC, ST ల ప్రత్యేక అభివృద్ధి నిధి :
SC, ST ల ప్రత్యేక అభివృద్ధి నిధి (SDF) చట్టం, 2017 ననుసరించి తెలంగాణ ప్రభుత్వం రెండు బడ్జెట్ పద్దులను అనగా (i) SC ప్రత్యేక అభివృద్ధి నిధి (SCSDF), (ii) ST ప్రత్యేక అభివృద్ధి నిధి (STSDF) లను రూపకల్పన చేసింది.

ii) షెడ్యూల్డ్ కులాల సంక్షేమం :
తెలంగాణలో షెడ్యూల్డ్ కులాల అభివృద్ధి శాఖ కింద వివరించిన పథకాల అమలును పర్యవేక్షిస్తుంది.

a) SC లకు కళ్యాణ లక్ష్మి :
అక్టోబర్, 2, 2014న ఈ పథకాన్ని ప్రభుత్వం ప్రారంభించింది. తెలంగాణకు చెందిన SC వర్గపు 18 సంవత్సరాల వయస్సు పై బడిన బాలిక వివాహ ఖర్చుల కొరకు వధువు కుటుంబానికి రూ.51,000 ప్రభుత్వం గతంలో ఇచ్చేది. ఇందుకు SC కుటుంబపు తల్లిదండ్రుల ఆదాయ పరిమితి 2 లక్షల రూపాయలు. కాగా కల్యాణ లక్ష్మి గ్రాంటును ప్రభుత్వం 2017లో రూ.75,116 లకు, 2018 లో రూ.1,00,116 లకు పెంచింది.

b) అంబేద్కర్ ఓవర్సీస్ నిధి పథకం :
ఈ గ్రాంటు ద్వారా విద్యార్థులు USA, UK, కెనడా, ఆస్ట్రేలియా, సింగపూర్, ఫ్రాన్స్, జర్మనీ, జపాన్, న్యూజిలాండ్ మరియు సౌత్ కొరియా వంటి దేశాల్లో విద్యను అభ్యసించవచ్చు. 2018-19 సంవత్సరంలో 101 మంది విద్యార్థులు ఈ పథకంలో ఎంపికయ్యారు.

c) భూమి కొనుగోలు పథకం :
నిరుపేద షెడ్యూల్డ్ కులాల మహిళలకు లబ్ధి చేకూర్చుటకు ఈ పథకాన్ని రూపొందించారు. ఈ పధరం కింద 2014-16 నుంచి 2019-20 మధ్య కాలంలో దాదాపు రూ.667.71 కోట్ల వ్యయంతో సుమారు 15,044.35 ఎకరాల భూమిని కొనుగోలు చేయగా 5,930 మందికి పంపిణీ చేశారు.

iii) షెడ్యూల్డ్ తెగల సంక్షేమం :
షెడ్యూల్డ్ తెగల సమగ్రాభివృద్ధి కొరకు తెలంగాణ ప్రభుత్వం కింద తెలిపిన పథకాలను అమలు పరుస్తున్నది.

a) ST లకు కల్యాణ లక్ష్మి :
ఈ పథకాన్ని అక్టోబర్ 2, 2014లో ప్రారంభించారు. ఈ పథకం కింద 18 సంవత్సరాలు నిండిన తెలంగాణకు చెందిన ST యువతి కళ్యాణ ఖర్చుల కోసం రూపాయలు 1,00,116 ఆర్థిక సహాయం ఇవ్వబడుతుంది.

b) ఆర్థిక మద్దతు పథకాలు :
ఈ పథకం ద్వారా వ్యవసాయ రంగం, ఉద్యానవనం, మత్స్య పరిశ్రమ, చిన్న నీటి పారుదల, పశు సంవర్ధకం, స్వయం ఉపాధి వంటి రంగాలలో నిమగ్నమైన గిరిజనులకు ఆర్థిక సహాయం కల్పిస్తారు.

c) అడవి హక్కుల చట్టం, 2006 :
తమ జీవనోపాధి కొరకు కొన్ని యుగాల నుంచి అడవుల పై ఆధారపడి జీవించే గిరిజనులు, ఇతర సంప్రదాయ ఆటవిక జీవులకు తమ జీవనాన్ని కొనసాగించుకొనే రక్షణను అడవి హక్కుల చట్టం – 2006 కల్పిస్తుంది. ఈ చట్టం ప్రకారం 93,494 మంది గిరిజనులకు 3,00,092 ఎకరాల భూమిని పంపిణీ చేయడం జరిగింది.

C. వెనకబడిన వర్గాల (BC) అభివృద్ధి, సంక్షేమ పథకాలు :
వెనకబడిన తరగతుల వర్గాల సంక్షేమం కోసం తెలంగాణ ప్రభుత్వం చేపట్టిన పథకాలు :

i) కళ్యాణ లక్ష్మి :
2016-17 సంవత్సరం నుంచి కళ్యాణ లక్ష్మి పథకాన్ని వెనకబడిన తరగతులు (BC), ఆర్థికంగా వెనకబడిన తరగతుల వారికి కూడా వర్తింపజేశారు.

ii) చాలా వెనకబడిన తరగతుల అభివృద్ధి కార్పోరేషన్ :
వెనకబడిన తరగతుల వర్గాలలో సాంఘికంగా, విద్యాపరంగా, ఆర్థికపరంగా చాలా వెనకబడిన తరగతుల (MBC) సంక్షేమంలో మెరుగుదల కొరకు ఈ కార్పోరేషన్ ను 2017లో తెలంగాణ ప్రభుత్వం స్థాపించింది.

D. మైనార్టీల అభివృద్ధి, సంక్షేమ పథకాలు :
తెలంగాణ రాష్ట్రంలో మైనార్టీ వర్గం వారి సాంఘిక, ఆర్థిక స్థితిగతులలో పెంపుదల కోసం తెలంగాణ ప్రభుత్వం చేపట్టిన కొన్ని ముఖ్యమైన పథకాలను కింద వివరించాం.

a) బ్యాంక్తో అనుసంధానం చేయబడిన సబ్సిడీ పథకం : మైనార్టీ వర్గాల వారు స్వయంఉపాధి చేపట్టే వ్యాపారం చేసేవారికి ఈ పథకాన్ని ఉద్దేశించారు. సబ్సిడీతో కూడుకున్న ఆర్థిక సహాయాన్ని బ్యాంకుల ద్వారా మైనార్టీ ఫైనాన్స్ కార్పోరేషన్ కల్పిస్తుంది.
b) శిక్షణ, ఉద్యోగిత, నైపుణ్య అభివృద్ధి : మైనార్టీల శాఖ, మైనార్టి యువతకు తగిన శిక్షణను ఆ వారు స్వయం ఉపాధి చేపట్టుటకు వీలుగా మైనార్టీ ఫైనాన్స్ కార్పోరేషన్ ద్వారా ఆర్థిక సహకారాన్ని అందిస్తుంది.
c) షాదీ ముబారక్ పథకం : ఈ పథకం ప్రకారం అర్హమైన మైనార్టీ వర్గానికి చెందిన యువతి పెళ్ళి ఖర్చులకు రూ. 1,00,116 గ్రాంటు రూపంలో ఇవ్వబడుతుంది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

అతిస్వల్ప సమాధాన ప్రశ్నలు:

ప్రశ్న 1.
స్థూల జిల్లా ప్రాంతీయోత్పత్తి
జవాబు.
ఒక నిర్దిష్ట కాలం లేదా ఒక సంవత్సర కాలంలో ఒక జిల్లా యొక్క భౌగోళిక సరిహద్దులలో ఒక సంవత్సర కాలంలో ఒకటి. కంటే ఎక్కువసార్లు లెక్కించకుండా ఉత్పత్తి చేయబడిన వస్తుసేవల విలువను తెలిపేదే స్థూల, జిల్లా ప్రాంతీయోత్పత్తి (GDDP). ఈ GDDP అంచనా, ఒక జిల్లాను ఇతర జిల్లాలతో పోల్చుట ద్వారా ఆ జిల్లా యొక్క అభివృద్ధి స్థాయి వివరణకు తోడ్పడుతుంది.

ఈ వివరాల ప్రకారం తెలంగాణ రాష్ట్రంలో GDDP లో హైదరాబాదు జిల్లా ప్రథమ స్థానంలో ఉండగా, రంగారెడ్డి, మేడ్చల్-మల్కాజిగిరి, సంగారెడ్డి జిల్లాలు వరుసగా రెండవ, మూడవ, నాల్గవ స్థానాల్లో నిలిచాయి.

ప్రశ్న 2.
తలసరి ఆదాయం.
జవాబు.
ఒక దేశ జాతీయాదాయాన్ని ఆ దేశపు జనాభాతో భాగించగా వచ్చే మొత్తాన్ని తలసరి ఆదాయం అని అంటారు. ఈ భావనను క్రింది విధంగా వివరించవచ్చును.

తలసరి ఆదాయం = జాతీయాదాయం / జనాభా.

ప్రశ్న 3.
పిల్లల జనాభా.
జవాబు.
పిల్లల జనాభా (Child Population) :
0-6 సంవత్సరాల లోపు వారిని పిల్లలు (Children) గా భావించాలి. తెలంగాణలో పిల్లల జనాభా శాతం 2001 లో 14.2% నుంచి, 2011 లో 10.5%కు తగ్గింది. ఈ తగ్గుదలకు కారణం పెరుగుతున్న అక్షరాస్యత, అధిక ఆదాయాలకు తోడుగా కుటుంబ నియంత్రణ పద్ధతులు అవలంభించడం.

అన్ని జిల్లాలలో పిల్లల జనాభా శాతం, రాష్ట్ర సగటుకు దగ్గరగా 10.5%గా ఉన్నది. కేవలం ఒక మహబూబ్ నగర్ జిల్లాలో మాత్రం పిల్లల జనాభా 17.4% గా ఉంది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 4.
ఆహార, ఆహారేతర పంటలు.
జవాబు.
ధాన్యాలు, చిరుదాన్యాలు, పప్పుదినుసులు వంటివి ఆహార పంటలు. ప్రత్తి, నూనెగింజలు, పూలు వంటివి ఆహారేతర పంటలు. 2017-18 సంవత్సరంలో 37.14 లక్షల హెక్టార్ల భూమిలో ఆహారపంటలు సాగుచేయబడ్డాయి. ఇదే కాలంలో 23-45 లక్షల హెక్టార్లలో ఆహారేతర పంటలు సాగుచేయబడ్డాయి.

ప్రశ్న 5.
మనుగడలో ఉన్న కమతం.
జవాబు.
ఈ రకమైన వ్యవసాయ భూకమతాల సమాచార సేకరణ కోసం భారత ప్రభుత్వం ప్రతి 5 సం॥లకు ఒకసారి గణన నిర్వహిస్తుంది. ఈ గణన ప్రకారం మనుగడలో ఉన్న కమతాలు, ఉపాంత, చిన్న, మాధ్యమిక పెద్ద కమతాలు రూపంలో ఉన్నాయి. తెలంగాణలో 2010-11లో మనుగడలో గల సగటు కమతం పరిమాణం 1.12 హెక్టారులు. 2015-16 నాటికి ఇది 1.00 హెక్టారు (2.47 ఎకరాలు)గా ఉంది.

ప్రశ్న 6.
రైతుబంధు.
జవాబు.
రుణ భారం నుంచి విముక్తి కల్పిచేందుకు వీలుగా ఒక పెట్టుబడి రూపంలో సహకారాన్ని అందించి రైతుల సాధికారితను పెంచే ఉద్దేశంతో తెలంగాణ ప్రభుత్వం రూపొందించిన పథకమే రైతు బంధు. 2018, మే 10వ తేదిన ఈ పథకం ప్రారంభించబడ్డది.

2019-20 సంవత్సరం నుంచి తెలంగాణ ప్రభుత్వం ఈ రకమైన పెట్టుబడి సహకారాన్ని ప్రతి సీజను రూ.4,000 ఎకరం నుంచి రూ.5,000 లకు పెంచింది.

ప్రశ్న 7.
రైతు బీమా.
జవాబు.
2018, ఆగష్టు 15న తెలంగాణ ప్రభుత్వం ఈ పథకాన్ని ప్రారంభించింది. రోగగ్రస్తుడైన రైతు మరణిస్తే, అతని కుటుంబ సభ్యులు లేదా అతనిపై ఆధారపడిన వారికి ఆర్థికపరమైన భద్రతను కల్పించడం ఈ పథకం ప్రధాన ఉద్దేశం. ఈ పథకం కింద ప్రతి రైతుకు రూపాయలు 5 లక్షల బీమా కవరేజి ఉంటుంది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 8.
సూక్ష్మ, చిన్న మధ్య తరహా పరిశ్రమలు (MSME).
జవాబు.
ఈ పరిశ్రమలు పెద్దతరహా పరిశ్రమలకు అవసరం అయిన ఉత్పాదకాలను సప్లయ్ చేసే అనుషంగిక పరిశ్రమలుగా పనిచేస్తూ రాష్ట్రంలో సంతులిత ప్రాంతీయాభివృద్ధికి, సమ్మిళిత వృద్ధికి తోడ్పడతాయి. ఇవి తక్కువ మూలధనం, తక్కువ స్థాయి నైపుణ్యం గల పారిశ్రామిక యూనిట్ల ద్వారా ఉద్యోగ కల్పనలో కీలక పాత్రను కలిగి ఉంటాయి.

ప్రశ్న 9.
TS-ipass.
జవాబు.
తెలంగాణ రాష్ట్ర పారిశ్రామిక విధాన నినాదం “ఆవిష్కరించు, వృద్ధిపరచు, సంవిలీనించు”. తెలంగాణ రాష్ట్ర ప్రభుత్వం ”తెలంగాణ రాష్ట్ర పారిశ్రామిక ప్రాజెక్ట్ అనుమతి సొంత ధ్రువీకరణ (సర్టిఫికేషన్) విధానాన్ని (TS-ipass) రూపొందించి, పెట్టుబడిదారుల అనుకూల విధానాన్ని ప్రవేశపెట్టి, పెట్టుబడులను ఆకర్షించి పారిశ్రామిక ప్రగతికి బాటలు వేసింది”.

ప్రశ్న 10.
ఇమేజ్ టవర్.
జవాబు.
అధునాతన అవస్థాపనా సౌకర్యాల కల్పన ద్వారా యానిమేషన్, గేమింగ్, VFX సేవల కల్పనకు IMAGE టవర్ను నెలకొల్పుటకు తెలంగాణ ప్రభుత్వం సంకల్పించింది. దీనిని రుద్రారం గ్రామం, రంగారెడ్డి జిల్లాలో 10 ఎకరాల స్థలంలో రూ. 1,000 కోట్లతో ప్రభుత్వ, ప్రైవేట్ భాగస్వామ్యం (PPP)లో స్థాపించ తలపెట్టింది.

ప్రశ్న 11.
ఆసరా పెన్షన్ పథకం
జవాబు.
ప్రభుత్వం సాంఘిక భద్రత, సంక్షేమం దృష్ట్యా ఈ పథకాన్ని ప్రారంభించింది. ఆసరా పథకం క్రింద వృద్ధులు, వితంతువులు, వికలాంగులు, నేత కార్మికులు, కల్లుగీత కార్మికులు, ఉపాధిని కోల్పోయిన వారికి నెలకు 1000/- వికలాంగులకు 1,500/- ఆర్థిక సహాయం అందించే కార్యక్రమాన్ని అమలు చేస్తున్నది. దీనిని బీడి కార్మికులకు కూడా వర్తింపజేసింది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 12.
తెలంగాణ ఫైబర్ గ్రిడ్.
జవాబు.
ఈ ప్రాజెక్టును తెలంగాణ ప్రభుత్వం 2015లో ప్రారంభించింది. తగిన అవస్థాపనా సౌకర్యాలను కల్పించి 10 జోన్లు (33 జిల్లాలో) గా ‘డిజిటల్ తెలంగాణ’ను సాకారం చేయడం ఈ ప్రాజెక్టు ప్రధాన లక్ష్యం.

ప్రశ్న 13.
మిషన్ కాకతీయ.
జవాబు.
వ్యవసాయాన్ని పునరుత్తేజం చేసేందుకు దీర్ఘకాలిక చర్యగా నూతన ప్రభుత్వం “మిషన్ కాకతీయ” అనే ఒక బృహత్తర కార్యక్రమాన్ని ప్రారంభించింది. దీని ప్రధాన ఆశయం “మన ఊరు మన చెరువు”.

ఈ కార్యక్రమం క్రింద సంప్రదాయ చెరువులు, చిన్న నీటిపారుదల వనరులను పునరుద్ధరించడం, ఉపరితల భూగర్భ జలాలను మెరుగుపర్చడం ద్వారా 46,531 చెరువులను రానున్న 5 సంవత్సరాలలో దశల వారీగా పునరుద్ధరించాలని ప్రతిపాదించడం జరిగింది.

ప్రశ్న 14.
తెలంగాణలో స్త్రీ,పురుషుల నిష్పత్తి.
జవాబు.
వెయ్యిమంది పురుషులకు స్త్రీల సంఖ్య ఆధారంగా స్త్రీ-పురుష నిష్పత్తి నిర్ణయించబడుతుంది. 2011 జనాభా లెక్కల ప్రకారం తెలంగాణలో ప్రతి 1000 మంది పురుషులకు 988 మంది స్త్రీల అనుపాతం ఉంది. భారతదేశంలో ఈ అనుపాతం 1,000 మంది పురుషులకు 943 మంది స్త్రీలు ఉన్నారు. కాబట్టి తెలంగాణ రాష్ట్రంలో స్త్రీలు ఇండియాలో గల సగటు స్త్రీల సంఖ్య కంటే అధికంగా ఉన్నారని తెలుస్తుంది.

ప్రశ్న 15.
స్థూల నమోదు నిష్పత్తి (GER).
జవాబు.
స్థూల నమోదు నిష్పత్తి (GER) విశ్వవిద్యాలయాలు, కళాశాలలు, పాఠశాలలో విద్యార్థుల నమోదు సంఖ్యను నిర్ణయిస్తుంది. GER 2017-18లో ప్రాథమిక పాఠశాలలో బాలురు – 98.76 శాతం, బాలికలు – 98.05 శాతం కాగా ఉచ్ఛతర ప్రాథమిక పాఠశాలలో బాలురు – 87.32 శాతం, బాలికలు 88.4.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 16.
షెడ్యూల్డ్ కులాల రెసిడెన్షియల్ పాఠశాలలు.
జవాబు.
తెలంగాణా సాంఘికసంక్షేమ రెసిడెన్షియల్ విద్యాసంస్థల సొసైటీ రాష్ట్రంలో 269 రెసిడెన్షియల్ విద్యాసంస్థలను నడుపుతుంది. ఇందులో 175 బాలికలకు సంబంధించినవి. వీటిలో 5వ తరగతి నుండి డీగ్రీ వరకు షెడ్యూల్డ్ కులాలకు చెందిన ప్రవేశం కలదు.

ప్రశ్న 17.
కంటి వెలుగు,
జవాబు.
సామాన్యంగా ప్రజలు ప్రత్యేకించి మహిళలు, వృద్ధులు కంటి సమస్యలను వాయిదా వేయడం లేదా ఆ సమస్యలను కొనసాగిస్తూనే జీవనాన్ని గడుపుతుంటారు. ఈ సమస్య నివారణ కోసమే తెలంగాణ ప్రభుత్వం కంటి వెలుగు పథకాన్ని రూపొందించి అమలుపరుస్తున్నది.

ప్రశ్న 18.
మానవ అభివృద్ధి సూచిక.
జవాబు.
ఈ సూచికలో మూడు అంశాలు ఉంటాయి. అవి
ఎ) తలసరి ఆదాయం
బి) ఆయుర్ధాయం, ఆరోగ్య ప్రామాణికతలు,
సి) అక్షరాస్యత, విద్య.

ప్రశ్న 19.
ఆరోగ్య లక్ష్మి.
జవాబు.
గర్భిణీ స్త్రీలు, పిల్లలకు పాలిచ్చే తల్లులలో పౌష్టిక, పోషక విలువలు పెంచుట కొరకు ఈ పథకాన్ని రూపొందించారు. తెలంగాణ ప్రభుత్వం ఈ పథకాన్ని అంగన్ వాడి కేంద్రాల ద్వారా పేదరికపు రేఖకు దిగువన ఉన్న గర్భిణీ స్త్రీలు, 6 సంవత్సరాల లోపు వయస్సు గల పిల్లలకు ప్రతిరోజు పోషకాహాన్ని అందిస్తుంది. ఈ పథకాన్ని జనవరి 1, 2015 న ప్రారంభించారు.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 20.
నిరుద్యోగిత.
జవాబు.
అమలులో ఉన్న వేతన రేటు వద్ద ఒక వ్యక్తి శారీరకంగా, మానసికంగా పనిచేయడాన్ని సిద్ధంగా ఉన్నప్పటికి అతనికి ఉద్యోగ అవకాశం లభ్యం కాకపోవడాన్ని నిరుద్యోగితగా చెబుతారు. ఈ భావన దేశంలో నిరుద్యోగుల సంఖ్య కంటే ఉద్యోగావకాశాల సంఖ్య తక్కువగా ఉండే స్థితిని సూచిస్తుంది.

ప్రశ్న 21.
కళ్యాణ లక్ష్మి.
జవాబు.
ఆర్థికంగా వెనుకబడిన ఎస్.సి., ఎస్.టి. కుటుంబాలలో పెళ్ళి చేసుకొనే అమ్మాయిలకు ఒకేసారి 51 వేల రూపాయల ఆర్థిక సహాయాన్ని అందించే కార్యక్రమాన్ని అక్టోబరు 2, 2014 నుంచి ప్రారంభించింది.

ప్రశ్న 22.
మిషన్ భగీరథ.
జవాబు.
కృష్ణ, గోదావరి నదుల నీటి సహాయంతో శుద్ధి చేసిన త్రాగునీరును పైపులైను ద్వారా రాష్ట్ర ప్రజలకు అందుబాటులోకి తేవడం ఈ పథకం ముఖ్య ఆశయం. ఈ పథకాన్ని 7 ఆగస్టు, 2016లో కోమటిబండ, మెదక్ జిల్లాలో ప్రారంభించారు. గ్రామ ప్రజలకు 100 లీటర్లు, మున్సిపాలిటీ వాసులకు 135 లీటర్లు కార్పొరేషన్ వారికి 150 లీటర్లు అందించాలనేది లక్ష్యం.

ప్రశ్న 23.
B.C సంక్షేమ పథకాలు.
జవాబు.
వెనకబడిన తరగతుల వర్గాల సంక్షేమం కోసం తెలంగాణ ప్రభుత్వం చేపట్టిన పథకాలు :

i) కళ్యాణ లక్ష్మి :
2016-17 సంవత్సరం నుంచి కళ్యాణ లక్ష్మి పథకాన్ని వెనకబడిన తరగతులు (BC), ఆర్థికంగా వెనకబడిన తరగతుల వారికి కూడా వర్తింపజేశారు.

ii) చాలా వెనకబడిన తరగతుల అభివృద్ధి కార్పోరేషన్ :
వెనకబడిన తరగతుల వర్గాలలో సాంఘికంగా, విద్యాపరంగా, ఆర్థికపరంగా చాలా వెనకబడిన తరగతుల (MBC) సంక్షేమంలో మెరుగుదల కొరకు ఈ కార్పోరేషన్ ను 2017లో తెలంగాణ ప్రభుత్వం స్థాపించింది.

TS Board Inter Second Year Economics Study Material Chapter 10 తెలంగాణ ఆర్థిక వ్యవస్థ

ప్రశ్న 24.
మైనారిటీల సంక్షేమ పథకాలు.
జవాబు.
తెలంగాణ రాష్ట్రంలో మైనార్టీ వర్గం వారి సాంఘిక, ఆర్థిక స్థితిగతులలో పెంపుదల కోసం తెలంగాణ ప్రభుత్వం చేపట్టిన కొన్ని ముఖ్యమైన పథకాలను కింద వివరించాం.

a) బ్యాంక్ తో అనుసంధానం చేయబడిన సబ్సిడీ పథకం :
మైనార్టీ వర్గాల వారు స్వయంఉపాధి చేపట్టే వ్యాపారం చేసేవారికి ఈ పథకాన్ని ఉద్దేశించారు. సబ్సిడీతో కూడుకున్న ఆర్థిక సహాయాన్ని బ్యాంకుల ద్వారా మైనార్టీ ఫైనాన్స్ కార్పోరేషన్ కల్పిస్తుంది.

b) శిక్షణ, ఉద్యోగిత, నైపుణ్య అభివృద్ధి :
మైనార్టీల శాఖ, 3 యువతకు తగిన శిక్షణను ఆ వారు స్వయం ఉపాధి చేపట్టుటకు వీలుగా మైనార్టీ పైనాన్స్ కార్పోరేషన్ ద్వారా ఆర్థిక సహకారాన్ని అందిస్తుంది.

c) షాదీ ముబారక్ పథకం :
ఈ పథకం ప్రకారం అర్హమైన మైనార్టీ వర్గానికి చెందిన యువతి పెళ్ళి ఖర్చులకు రూ.1,00,116 గ్రాంటు రూపంలో ఇవ్వబడుతుంది. కళ్యాణ లక్ష్మి. మిషన్ భగీరథ.

TS Inter 2nd Year Economics Study Material

TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle

These TS 10th Class Maths Chapter Wise Important Questions Chapter 9 Tangents and Secants to a Circle given here will help you to solve different types of questions.

TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle

Previous Exams Questions

Question 1.
What do we call the part a and b in the below circle ? (A.P. June ’15)
TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle 6
Solution:
a is minor segment and ‘b’ is major segment.

Question 2.
How many tangents can be drawn to a circle from a point on the same circle, Why? (T.S. Mar. ’15)
Solution:
The number of tangents that can be drawn to a circle from a point on it is one. This is as per concept of tangents.

Question 3.
Draw a circle with radius 3 cm and construct a pair of tangents from a point 8 cam away from the centre. (T.S. Mar. ’15)
Solution:
TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle 7
AP, BP are joining rays

TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle

Question 4.
Construct and measure the length of a pair ? of tangents that are drawn from a point at a distance of 8 cm whose radius is 5 cm. (T.S. Mar. ’16)
Solution:
Steps of construction :

  1. Construct a circle with a radius of 5 cm.
  2. Take the point ‘p’ in the exterior of the circle which is at a distance of ‘8’ cm from its centre.
  3. Construct a perpendicular bisector to OP which meets at M.
  4. The draw a circle with a radius of MP or MO from the point M. This circle cuts the previous circle drawn from the centre ‘O’ at the points A and B.
  5. Now join the points PA and then PB.
  6. PA, PB are the required tangents which are measured 6.2 cm long.
    TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle 8

OA = 5 cm
OP = 8 cm
AP = PB = 6.2 cm.

Additional Questions

Question 1.
Calculate the length of Tangent from a point 13 cm away from the centre of a circle of radius 5 cm.
Solution:
In ∆OTR ∠OTP = 90°
OT = 5 cm, OP = 13 cm
By Pythagoras theorem
TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle 1
OP2 = OT2 + PT2
132 = 52 + PT2
⇒ PT2 = 132 – 52
= 169 – 25 = 144
PT = \(\sqrt{144}\) = 12 cm
∴ Length of the required tangent = PT = 12 cm

Question 2.
Two concentric circles of radii 25 cm and 24 cm are drawn. Find the length of the chord of the larger circle which touches the smaller circle.
Solution:
Given two circles of radii 25 cm and 24 cm with common centre.
Let AB be the tangent to the inner circle and chord to the larger circle. Let ‘P’ be the point of contact.
TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle 2
In the figure ∠OPB = 90°
OP = 24 cm, OB = 25 cm
Now OB2 = OP2 + PB2
252 = 242 + PB2
⇒ 625 = 576 + PB2
⇒ PB2 = 625 – 576 = 49
PB = \(\sqrt{49}\) = 7 cm
Now AB = 2 × PB = 2 × 7 = 14 cm
∴ Length of the chord to the larger circle = AB = 14 cm

TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle

Question 3.
Find the area of a quadrant of a circle whose circumference is 88 cm.
Solution:
Given circumference of a circle = 88 cm
Let r = Radius of the circle
Now 2πr = 88
⇒ r = \(\frac{88}{2 \pi}\) = \(\frac{88}{2 \times \frac{22}{7}}\)
= \(\frac{88 \times 7}{2 \times 22}\) = 14 cm
Area of the circle = πr2 = \(\frac{22}{7}\) × (14)2
= \(\frac{22}{7}\) × 14 × 14
Area of the quadrant of a circle = \(\frac{1}{4}\) (πr2)
= \(\frac{1}{4}\) × \(\frac{22}{7}\) × 14 × 14
= 154 cm2

Question 4.
The length of the minute hand of a clock is 21 cm. Find the area swept by the volume by the minute hand in 20 minutes.
Solution:
Angle made by minute hand in 1 min = \(\frac{360^{\circ}}{60^{\circ}}\)
= 6°
Angle made by minute hand in 20 min
= 20 × 6° = 120°
The area swept by minute hand is in the shape of a sector with radius.
r = 21 cm and angle x = 120°
Area (A) = \(\frac{\mathbf{x}^{\circ}}{360^{\circ}}\) × πr2
= \(\frac{120^{\circ}}{360^{\circ}}\) × \(\frac{22}{7}\) × 21 × 21
= 462 cm2
∴ Area swept by minute hand in 20 minutes = 462 cm2.

TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle

Question 5.
Two circle touch internally. The sum of their area is 125π cm2 and distance between their centre is 5 cm. Find the radii of the circles.
Solution:
Let r1 and r2 be the radii of the given circles.
Sum of the areas of two circles
⇒ πr12 + πr22 = 125 π
⇒ π(r12 + r22) = 125 π
⇒ r12 + r22 = 125 …………………… (1)
Distance between the centres = r1 – r2 (r1 > r2)
= 5 cm
Now (r1 – r2)2 = (r12 + r22) – 2r1r2
(5)2 = 125 – 2r1r2 from (1)
⇒ 2r1r2 = 125 – 25
2r1r2 = 100 …………….. (2)
Then (r1 + r2)2 = r12 + r22 + 2r1r2
= 125 + 100 (∵ from (1) and (2))
(r1 + r2)2 = 225
⇒ r1 + r2 = \(\sqrt{225}\) = 15
TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle 3
and r1 – r2 = 5
10 – r2 = 5
⇒ r2 = 10 – 5 = 5 cm
⇒ r1 = \(\frac{10}{2}\) = 10 cm
∴ r1 = 10 cm and r2 = 5 cm

TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle

Question 6.
Find the area of the shaded region in the figure, given in which two circles with centres A and B touch each other at the point P. If AP = 10 cm and AB = 5 cm.
Solution:
AP denotes the radius of the bigger circle, i.e.,
AP = 10 cm
= r1 (say)
TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle 4
AB denotes the distance between the centres of two circles i.e
A – B = 5 cm
BP denotes the radius of the smaller Circle i.e.,
BP = AP – AB
= 10 – 5 = 5 cm = r2 (say)
The area of the shaded region = Area of the bigger circle – Area of the smaller area
= πr12 – πr22
= π(r12 – r22)
= π(102 – 522)
= π(100 – 25)
= π(75)
= \(\frac{22}{7}\) × 75
= 235.71 cm2

Question 7.
O is any point inside a rectangle ABCD prove that OB2 + OD2 = OA2 + OC2.
Solution:
Here PQ || BC so that
‘P’ is on AB; Q is on CD
If PQ || BC then
PQ ⊥ AB and PQ ⊥ CD
∴ ∠B = ∠C = 90°
∠BPQ = 90°
∠CQP = 90°
TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle 5

TS 10th Class Maths Important Questions Chapter 9 Tangents and Secants to a Circle

So that BPQC and APQD are the rectangles.
From ∆OPB, OB2 = BP2 + OP2 ……………. (1)
and ∆OQD, OD2 = OQ2 + DQ2 ………………. (2)
From ∆OQC, OC2 = OQ2 + CQ2 ……………. (3)
From ∆OAR, OA2 = AP2 + OP2 …………….. (4)
(1) + (2) OB2 = BP2 + OP2
OD2 = OQ2 + DQ2
OB2 + OD2 = BP2 + OQ2 + OP2 + DQ2
From figure BP = CQ and DQ = AP
∴ OB2 + OD2 = CQ2 + OQ2 + OP2 + AP2
From (3) & (4)
OQ2 + CQ2 = OC2; AP2 + OP2 = OA2
∴ OB2 + OD2 = OC2 + OA2

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

Telangana SCERT TS 10th Class Physical Science Study Material Pdf 6th Lesson Structure of Atom Textbook Questions and Answers.

TS 10th Class Physical Science 6th Lesson Questions and Answers Structure of Atom

Improve Your Learning
I. Reflections on concepts

Question 1.
What information does the electronic configuration of an atom provide?
Answer:

  1. The distribution of electrons in shells, sub-shells arid orbitals in an atom is ‘known as electronic configuration.
  2. The distribution of electrons In various atomic orbitals provides an understanding of the electronic behaviour of the atom and in turn its reactivity.
  3. The short-hand notation is as shown below.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 1

Question 2.
Rainbow is an example for continuous spectrum – explain.
Answer:

  1. A rainbow is a natural spectrum appearing in the sky while it is drizzling and the sun is in the east or west.
  2. It is caused by dispersion of sunlight by tiny water droplets present in atmosphere. It consists of 7 colours.
  3. In a rainbow, there are no sharp boundaries in between colours.
  4. Such a spectrum in which there are no sharp boundaries in between colours is known as continuous spectrum.
  5. So, rainbow is also a continuous spectrum.

Question 3.
What is an orbital? How is it different from Bohr’s orbit?
Answer:
The region or space around the nucleus where the probability of- finding the electron is maximum is called an orbital.

  1. Bohr’s orbit has a definite boundary and fixed energy at different distances from the nucleus. They are circular In shape.
  2. OrbitaIs have no definite boundary. It Is a region where we find maximum possibility of electrons. The shape of each orbital is different.
  3. Bohr’s orbit can accommodate maximum of (2n2) electrons ¡n it, but each orbital can accommodate only 2 electrons.

Question 4.
Explain the significance of three Quantum numbers in predicting the positions of an electron in an atom.
Answer:
Each electron In an atom Is described by a set of three quantum numbers n, l, and ml.
(1) PrincIpal Quantum number (n): The principal quantum number is used to describe the size and energy of the main shell. It Is denoted by ‘n’. ‘n’ has positive It is use integer values of 1,2,3.
It is used to know the number of orbitals (n2) and electrons in an orbit. (2n2).
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 2
As ‘n’ increases the shells become larger and the electrons in those shells are farther from the nucleus.

2. The angular-momentum quantum number (l) :
from ‘0’ to n – 1, for each value of ‘n’. Each ‘l’ value represented one sub-shell. It is used to describe the shape of an orbit.
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 3
3. The magnetic quantum number (ml): The magnetic quantum number (ml) has integer values between – l and + l including zero.
If l= 0, the possible ml, value is l
l=1, the possible ml, value is- 1,0 and 1.
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 4
Thus for a certain value of 1, there are (2l + 1) integer values of ml.
These values describe the orientation of the orbital in space relative to the other orbitals in the atom,
Eg: When l = 1, (2l + 1) = 3, that means ni has 3 values namely – 1, 0, 1 or three p orbitals, with different orientations along X, Y, Z axes, labelled as px, py and pz orbitals. Predicting the position of an electron in an atom: If the values of n, l and m1 are 2, 1, -1 respectively the electron is present in 2px orbital in L shell.
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 5

Question 5.
What is nlx method? How It is useful?
Answer:
The shorthand notation consists of the principal energy level (n value) the letter representing sub-level (l value) and the number of electrons In the sub-shell is written as superscript nlx It is useful in writing electron configurations of elements. For example in hydrogen (H), the set of quantum numbers Is n = 1,l = 0, ml= 0, ms= 1/2 or -1/2
The electronic configuration is
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 6

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

Question 6.
Which electronic shell Is a higher energy level K or L?
Answer:

  1. L shell has higher energy because according to Bohrs theory the shell which Is closer to nucleus has lower energy and the shell which is away from the nucleus has higher energy.
  2. K is closer to nucleus. So it has lower energy than L-shell.

Question 7.
What Is absorption spectrum?
Answer:
Absorption spectrum: The spectrum formed by the absorption of energy when electron jumps from lower energy level to higher energy level is called absorption Spectrum. It contains dark lines on bright background.

Question 8.
What is emission spectrum?
Answer:
Emission spectrum is the spectrum of frequencies of electromagnetic radiation due to an atom’s electron making a transition from a high-energy state to low energy state.

Application Of Concepts

Question 1.
Answer the following questions.
a. How many maximum number of electrons that can be accommodated In a principal energy level?
Answer:
The maximum number of electrons that can be accommodated in a principal energy shell is given by the rule 2n2, where ‘n’ is the principal quantum number.
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 7

b. How many maximum numbers of electrons that can be accommodated In a sub-shell?
Answer:

  1. each subshell holds a maximum of twice as many electrons as the number of orbitals in the sub-shell.
  2. The maximum number of electrons that can occupy various sub-shells is

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 8
c. How many maximum numbers of electrons can be accommodated In an orbital?
Answer:
The maximum number of electrons that can be accommodated In an orbital is 2.

d. How many sub-shells are present In a principal energy shell?
Answer:
The number of sub-shells present in a principal energy shell is equal to principal quantum number ‘n’. Eg:
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 9

e. How many spin orientations are possible for an electron in an orbital?
Answer:
Two spin orientations are possible for an electron in an orbital, one clockwise and the other anticlockwise spin. There are represented by + 1/2 and – 1/2.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

Question 2.
In an atom the number of electrons In M-shell is equal to the number of electrons in the K and L shells. Answer the following questions.
(a) Which is the outermost shell?
(b)How many electrons are there In its outermost shell?
(C) What is the atomic number of element?
(d) Write the electronic configuration of the element.
Answer:
No. of electrons in M’ shell Is equal to number of electrons In the K and L shells.
∴ No. of electrons n M shell = 2 + 8 = 10
Total electrons in the given atom = 2(K) + 8(L) + 10 (M) = 20
The electronic configuration Is = Is22s22p63s23p64s23d2

(a) M shell is the outermost shell.
(b) There are ‘2’ electrons in the outermost shell.
(c) The atomic number of the element is 20.
(d) Electronic configuration of the element: Is22s22p63s23p44s2

Question 3.
How many elliptical orbits are there in third Bohr’s orbit?
Answer:

  1. To explain the splitting of line spectra, Sommerfeld modified Bohr’s atomic model by adding elliptical orbits.
  2. RetaIning the first of Bohr’s circular orbit as such, Sommerfeld added two elliptical orbits to Bohr’s third orbit.

Question 4.
Following orbital diagram shows the electron configuration of nitrogen atom. Which rule does not support this? N (Z = 7)
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 10
Answer:
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 11
This electronic configuration of nitrogen is not correct.
It does not support Hund’s rule which states, the orbitals of equal energy are occupied by one electron each before pairing of electrons starts.
So the correct electron configuration is:
N (Z=7)
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 12

Question 5.
(i) An electron in an atom has the following set of four quantum numbers. To which orbital does it belong?
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 13
(ii) Write the four quantum numbers for is’ 1S1 electron.
Answer:
(i) Given n = 2 and l= 0 represent’s’orbital so the orbital is 2s and s= + ½ so by n1x method it is 2s1.
(ii) The four quantum numbers for Is1’ electron is
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 14

Question 6.
The wavelength of a radio wave is 1.0 m. Find its frequency.
Answer:
Given:
Wavelength λ = 1.0 m
We know that velocity of light c = vλ
Where c = 3 x 108 m/s
∴ 3 × 108 = v.1
v= 3 x 108
So, frequency of wave = 3 x 108 Hertz

Question 7.
Which rule Is violated in the electronic configuration is° 252 2p4?
Answer:
In the above electronic configuration Aufbau principle is violated.
(n+ 1) valueof isis 1+0 = 1
(n + 1)valueof2sis2 +0 = 2
Here electrons are filled in 2s Orbital, without completing is orbital which has lower (n + 1) value than 2s. Hence Aufbau principle is violated.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

Question 8.
Write the four quantum numbers for the differentiating electron of sodiun (Na atom).
Answer:
(i) Electron configuration of sodium (Z = 11)
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 15
(ii) The differentiating electron is in 3s1. The four quantum numbers of this electron are
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 16

Question 8.
Collect the information regarding wavelengths and corresponding frequencies of three primary colours red, blue and green.
Answer:

ColourFrequency (THz)Wavelength (nm)
Red400 – 494620-750
Blue606- 668450-495
Green526-606495-570

Red colour has more wavelength among the seven colours of VIBGYOR. So it can be invisible from larger distances also. So it is used In signal lights.

Multiple choice questions

Question 1.
An emission spectrum consists of bright spectral lines on a dark background. Which one of the following does not correspond to the bright spectral lines? [ ]
(A) Frequency of emitted radiation
(B) Wavelength of emitted radiation
(C) Energy of emitted radiations
(D) Velocity of light
Answer:
(D) Velocity of light

Question 2.
The maximum number of electrons that can be accommodated in the L – shell of an atom is …………………. .[ ]
(A) 2
(B) 4
(C) 8
(D) 16
Answer:
(C) 8

Question 3.
If l=l for an atom then the number of orbitals in its sub-shell is ……………………… .[ ]
(A) 1
(B) 2
(C) 3
(D) 0
Answer:
(C) 3

Question 4.
The quantum number which explains about size and energy of the orbit or shell is: …………………….. . [ ]
(A) n
(B) l
(C) ml
(D) ms
Answer:
(A) n

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

Suggested Projects

Question 1.
Collect the information of historical development of atomic theory.
Answer:
The first atomic theory was proposed by. John Dalton based on law of conservation of mass and law of constant proportions.

The important postulates of his theory are:

  1. Atoms were indivisible.
  2. Atoms of an element are all identical to each other and different from the atoms of other elements.
    Later on various experiments conducted by Thomson, Goldstein etc. proved that atom is divisible and consists of sub-atomic particles like electrons, protons and neutrons. Based on this J.J.

Thomson proposed a model of atom in 1898. According to Thomson,

  1. An atom is considered to be a sphere of uniform positive charge and electrons are embedded in It.
  2. The total mass of the atom is considered to be uniformly distributed throughout the atom.
  3. The negative and the positive charges are supposed to be balanced out and the atom as a whole is electrically neutral.

This model is also called as plum pudding model or watermelon model. Thomson’s student Ernest Rutherford conducted alpha particle scattering experiment got the results which were not in favour of Thomson’s model.

Based on his experiment, Rutherford proposed a model of atom. According to him,

  1. All the positively charged material In an atom formed a small dense Centre called the nucleus of the atom. The electrons were not a part of nucleus.
  2. Negatively charged electrons revolve around the nucleus is well-defined orbits like planets revolve around the sun.
  3. The size of nucleus is very small as compared to the size of the atom.

This model could not account for stability of atom, as revolving electron must lose energy and eventually crash into the nucleus, as a result matter would not exist in the it he form that we see it now. In 1913 Nells Bohr proposed another model to overcome Rutherford’s defect According to Bohr.

  • The electrons revolve around the nuleus In a discrete orbits called stationary, orbits.
  • While revolving in these discrete orbits the electrons do not radiate enery and this helps that the electrons do not crash into the nucleus.
  • Theseorbitsorshellsare represented by K, L, M, N, ……………………………. or the numbers 1,2,3, …………………….
    This model could not predict the spectra of atoms later Bohr along with Sommerfeld proposed the Bohr-Sommerfeld model of atom to account for the spectra of atoms.

Question 2.
Collect the information about the scientists who developed the atomic theories.
Answer:
(a) John Dalton

  1. Chemist John Dalton was born on September 6, 1766, In Eagles field, England.
  2. During his early career, he identified the hereditary nature of red-green colour blindness.
  3. In 1803, he revealed the concept of Daltons’ law of partial pressures.
  4. Also in the 1800s, he was the first scientist to explain the behaviour of atoms in terms of the measurement weight.
  5. During the early 1800s, Dalton also postulated a law of thermal expansion that illustrated the heating and cooling reaction of gases to expansion and compression.
  6. After suffering a second stroke, Dalton died quietly on the evening of July 26, 1844, at his home in Manchester England.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 17

(b) J.J. Thomson:

  1. J.J. Thomson was born on December 18, 1856, in Cheetham Hill, England and went on to attend Trinity College at Cambridge, where he would come to head the Cavendish Laboratory.
  2. His research In Cathode rays led to the discovery of electrons and he pursued further innovations In atomic structure exploration.
  3. Thomson won the 1906 Nobel Prize in Physics, among many accolades.
  4. He died on August 30, 1940.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 18

(c) Ernest Rutherford:

  1. Chemist and Physicist Ernest Rutherford was born on August 30, 1871, n Spring Grove, New Zealand.
  2. A pioneer of Nuclear Physics and the first to split the atom, Rutherford was awarded the 1908 Nobel Prize in Chemistry for his theory of atomic structure.
  3. He was the fourth of 12 children and second son. His father, James, had little education and struggled to support the large family on a flax-miller’s income.
  4. Ernest’s Mother, Martha, worked as a school teacher. She believed that knowledge was power, and placed a strong emphasis on her children’s education.
  5. Together, Rutherford and Thomson studied the effects of X-rays on the conductivity of gases, resulting Is a paper about dividing atoms and molecules into ions.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 19
6. Famous as the “Father of the Nuclear Age”, Rutherford died in Cambridge, England, on October 19, 1937.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

(d) Neils Bohr:

  1. (1) Born on October 7, 1885, In Copen Hagan, Denmark, Nells Bohr went on to become an accomplished physicist who came up with a revolutionary theory on atomic structures and radiation emission.
  2. (2) He won the 1922 Nobel Prize in physics for his ideas and years later, after working on the Manhattan project in the United States, called for responsible and peaceful applications of atomic energy across the world.
  3. (3) In 1957, Bohr received the “Atoms for Peace Award” for his trail-blazing theories and effects to use atomic energy wisely.
  4. (4) After having a stroke, he died on November 18, 1962, in Copen hagen. Bohr’s son Aage shared with two others the 1975 Nobel Prize in Physics for his research on motion in atomic nuclei.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 20

Question 3.
Make the s, p and d – orbital models.
Answer:
Material required: 10 iron spokes, 9 round-shaped wooden pieces, and dumbbell-shaped beads having holes along its length.

Procedure:

  1. Cut the each iron spoke into three pieces In which one of them Is longer than the other two.
  2. Make a hole at the middle of the wooden piece and insert the long spoke into that hole.
  3. Fix the other two spokes to the longer spoke horizontally such that the three spokes are perpendicular to each other.
  4. Now the three spokes represent X, Y and Z – axis.
  5. Make nine of these types of models, one for s-orbital, three for p-orbitals and five for d-orbitals.
  6. Fix the dumb-bell-shaped beeds to the Iron spokes as shown in the fig – to make three (Px, Py, P2) P – orbitals.
  7. Fix the dumb-bell-shaped beads to the iron spokes as shown in the fig. to make five d-orbitaIs. (dXY,
    dYZ,dZX,dX2 – y2 and dX2)

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 21

TS 10th Class Physical Science Structure of Atom Intext Questions

Page 106

Question 1.
How do these sub-atomic particles coexist in an electrically neutral atom?
Answer:
Protons and neutrons are present at the centre of the atom called nucleus, and electrons revolve around this nucleus in a circular manner.
As the number of protons and the number of electrons in a neutral atrn1s the same, the +ve charges and -ve charges being equal, they coexist.

Question 2.
Do all atoms have the same sub-atomic particles?
Answer:
Yes, all atoms have same sub-atomic particles but differ in number.

Question 3.
Why is an atom of one element different from the atoms of other elements?
Answer:
Because they have different numbers of sub-atomic particles.

Question 4.
How are the electrons distributed In the space of an atom?
Answer:
Electrons are distributed around the nucleus In subshells of orbits.

Page 107

Question 5.
How many colour sare there in a rainbow?
Answer:
There are seven colours namely violet, Indigo, blue, green, yellow, orange and red (VIBGYOR) in a rainbow.

Question 6.
How do the vibrating electric and magnetic fields around the charge become a wave that travels through space?
Answer:
A vibrating electric charge creates a change In the electric field. The changing electric field creates a changing magnetic field. This process continues, with both the created fields being perpendicular to each other and at right angles to the direction of propagation of the wave.

Question 7.
What are the characteristics of electromagnetic waves?
Answer:
The electromagnetic wave is characterized by wavelength ( λ), frequency (v), velocity (c) and amplitude.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

Page 108

Question 8.
Can we apply C=vλ equation to a sound wave?
Answer:
Yes. It is a universal relationship and applies to all waves. As the frequency increases, the wavelength becomes smaller.

Question 9.
Are there any other wavelengths of light other than visible spectrum?
Answer:
Yes. Cosmic Rays, Gamma Rays, X-rays, U.V. Ray5, I.R. Rays, Micro Waves, Radio Waves are other waves besides visible spectrum.

Page 109

Question 10.
What happens when you heat an iron rod on a flame? Do you find any change In colour on heating an Iron rod?
Answer:
When we heat an Iron rod, some of the heat energy is emitted as light. First It turns red (lower energy corresponding to higher wavelength) and as the temperature rises It glows in orange, yellow, blue (higher energy and of lower wavelength) or even white (all visible wavelengths) colour If the temperature Is high enough.

Question 11.
Do you observe any other colour at the same time when one colour is emitted?
Answer:
When the temperature Is high enough, other colours will also be emitted, but due to higher Intensity of one particular emitted colour (e.g., red), others cannot be observed.

Question 12.
Do you enjoy Deepavall fireworks?
Answer:
Yes, I enjoy because variety of colours are emitted from fireworks.

Question 13.
How do these colours come from fireworks?
Answer:
Inside each handmade crackers, there are small packets filled with special chemicals, mainly metal salts and metal oxides, which react to produce an array of colours. When heated, the atoms of each element in the mixture absorbs energy, causing its electrons to rearrange from their lowest energy state to a higher ‘excited” state. As the electrons plummet back down to their lower energy state, the excess energy gets emitted as light. Each element releases a different amount of energy, and this energy is what determines the colour or wavelength of the light that is emitted.

Page 110

Take a pinch of cupric chloride in a watch glass and make a paste with concentrated hydrochloric acid. Take this paste on a platinum loop and introduce it into a non-luminous flame.

Question 14.
Do you observe yellow light In street lamps?
Answer:
Yes, Sodium vapours produce yellow light in street lamps.

Question 15.
Why do different elements emit different flame colours when heated by the same non-luminous flame?
Answer:
Each element emits Its own characteristic colour when they come back from excited state to ground state. These colours correspond to certain discrete wavelengths of light.

Question 16.
What does a line spectrum tell us about the structure of an atom?
Answer:
We can identify the atom as to what element It belongs. Each element gives a unique light spectrum. That is how spectroscopy works for identifying the elements that make up a certain substance.

Question 17.
What happens when an electron gains energy?
Answer:
The electron moves to a higher energy level that is, the excited state.

Page 111

Question 18.
Does the electron retain the energy forever?
Answer:
The electron loses the energy and comes back to its ground state. The energy emitted by the electron is seen in the form of electromagnetic energy and when the wavelength is in the visible region it is visible as an emission line.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

Question 19.
Did Bohr’s model account for splitting of line spectra of a hydrogen atom Intofiner lines?
Answer:
Bohr’s model failed to account for splitting of line spectra.

Question 20.
Why is the electron in an atom restricted to revolve around the nucleus at certain fixed distances?
Answer:
Because the angular momentum of an electron in an orbit is quantized.

Page 112

Question 21.
Do the electrons follow defined paths around the nudeus?
Answer:
If the electron revolves around the nucleus in definite paths or orbits, the exact position of the electron at various times will be known.

Question 22.
What is the velocity of the electron?
Answer:
3 x 108 m/s

Question 23.
Is It possible to find the exact position of the electron?
Answer:
We can find the probable position of the electron alone but not position and momentum simultaneously.

Question 24.
What do we call the region of space where the electron might be, at a given time?
Answer:
The region or space around the nucleus where the probability of finding the electron Is maximum Is called an atomic orbital.

Page 113

Question 25.
What Information do the quantum numbers provide?
Answer:
The quantum numbers describe the space around the nucleus where the electrons can be found and also their energies. In fact, they give us the address of an electron.

Question 26.
What does each quantum number signify?
Answer:

  • The principal quantum number is related to the size and energy of the main shell.
  • The azimuthal quantum number gives the shape of a particular sub-shell in the space around the nucleus.
  • The magnetic quantum number describes the orientation of the orbital in space relative to the other orbitals in the atom.
  • The spin quantum number refers to the two possible orientations of the spin of an electron, one clockwise and the other anticlockwise spin. These are represented by +1/2 and -1/2. If both are positive values, then the spins are parallel otherwise the spins are non-parallel.

Page 114

Question 27.
What is the maximum value of ‘I’ for n=4?
Answer:
Three (Recall, l = n-1)

Question 28.
How many values can ‘I’ have for n=4?
Answer:
9 (2l+1=2×4+1=9)

Question 29.
Do these three p-orbitals have the same energy?
Answer:
The three p-orbitals have same energy and hence these are called degenerate orbitals.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

Page 116

Question 30.
How do electrons In an atom occupy shells, sub-shells and orbitals?
Answer:
Electrons occupy shells, sub-shells and orbitals according to Hund’s rule, Pauli’s rule and Aufbau’s principle.

Question 31.
Helium (Z=2) atom has two electrons. How are these two electrons arranged?
Answer:
Helium atom has two electrons. The first electron occupies ‘is’ orbital. The second electron joins the first In the 1s-orbital, and so the electron configuration of the ground state of He’ is 1s2. According to Pauli Exclusion Principle, no two electrons of the same atom can have all four quantum numbers the same.

If n, l, and ml, are same for two electrons then ms, must be different. In the helium atom the spins must be opposite. Electrons with paired spins are denoted by ‘↓↑’. One electron has m = + 1/2, the other has ms = -1/2. They have non-parallel spins.

Page 117

Question 32.
What are the spins of these two electrons?
Answer:
According to Paull’s Exclusion Principle, no two electrons of the same atom can have all four quantum numbers the same. If n, l, and m are same for two electrons then m must be different. In the helium atom, the spins must be paired. Electrons with paired spins are denoted by ‘↓↑’ one electron has ms=+½, th other has ms= -½. They have anti-parallel spins.

Question 33.
How many electrons can occupy an orbital?
Answer:
An orbital can hold only two electrons and they must have opposite spins.

Page 118

Question 34.
For carbon (C) atom (Z=6), where does the 6th electron go?
Answer:
In carbon, 6th electron enters into Py orbital but not Px orbital.

Question 35.
Whether the electron pairs up In the same p-orbItal or will it go to the next p-orbital?
Answer:
In carbon 6th electron enters into Py orbital but not Px orbital because according to Hunds rule electron pairing does not take place until each degenerate orbital is filled with one electron each.

TS 10th Class Physical Science Structure of Atom Activities

Activity 1

Question 1.
Explain the wave nature of light.
Answer:

  1. Light is an electromagnetic wave.
  2. Electromagnetic waves are produced when an electric field and magnetic field are perpendicular to each other.
  3. This vibrating electric charge creates a change in the electric field. The change in electric field creates a change In magnetic field.
  4. This process continues, with both the created fields being perpendicular to each other and at right angles to the direction of propagation of the wave.
  5. The electromagnetic wave is produced.

TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom

Activity 2

Question 2.
Write an activity which shows metals produce different colours In flame.
Answer:
(A)

  1. Take a pinch of cupric chloride in a watch glass and make a paste with concentrated hydrochloric acid.
  2. Take this paste on a platinum loop and introduce it into a non-luminous flame.
  3. Cuprlc chloride produces a green colour flame.

(B)

  1. Take a pinch of strontium chloride in a watch glass and make a paste with concentrated hydrochloric acid.
  2. Take this paste on a platinum loop and Introduce It into a non-luminous flame.
  3. Strontium chloride produces a crimson-red flame.

Activity 3

Question 3.
Complete the electronic configuration of the following elements.
Answer:
TS 10th Class Physical Science Solutions Chapter 6 Structure of Atom 23

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

Students can practice TS Class 10 Maths Solutions Chapter 8 Similar Triangles InText Questions to get the best methods of solving problems.

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

Do This

Question 1.
Fill in the blanks with similar / not similar. (AS3) (Page No : 194)
i) All squares are …………..
Solution:
similar

ii) All equilateral triangles are …………….
Solution:
similar

iii) All isosceles triangles are ……………
Solution:
similar

iv) Two polygons with same number of sides are ……………. if their corresponding angles are equal and corresponding sides are equal.
Solution:
similar

v) Reduced and Enlarged photographs of an object are ……………
Solution:
similar

vi) Rhombus and squares are …………….. to each other.
Solution:
not similar

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

Question 2.
Write the True / False for the following statements. (AS3) (Page No : 194)
i) Any two similar figures are congruent.
Solution:
False

ii) Any two congruent figures are similar.
Solution:
True

iii) Two polygons are similar if their corresponding angles are equal.
Solution:
False

Question 3.
Give two different examples of pair of (AS3) (Page No : 194)
i) Similar figures
ii) Non-similar figures
Solution:
i) Similar figures :
a) Any two circles
b) Any two squares
c) Any two equilateral triangles

ii) Non – similar figures :
a) A square and a rhombus
b) A square and a rectangle

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

Question 4.
What value(s) of x will make DE//AB, in the given figure ?
AD = 8x + 9, CD = x + 3, (AS1)
BE = 3x + 4, CE = x (Page No : 200) (A.P. Mar. ’16, ’15)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 1
Solution:
Given : In ∆ABC, DE // AB
AD = 8x + 9, CD = x + 3,
BE = 3x + 4, CE = x
By Basic Proportional theorem,
If DE // AB then we should have
\(\frac{\mathrm{CD}}{\mathrm{DA}}\) = \(\frac{\mathrm{CE}}{\mathrm{EB}}\)
∴ \(\frac{x+3}{8 x+9}\) = \(\frac{x}{3 x+4}\)
⇒ (x + 3) (3x + 4) = x(8x + 9)
⇒ x(3x + 4) + 3(3x + 4) = 8x2 + 9x
⇒ 3x2 + 4x + 9x + 12 = 8x2 + 9x
⇒ 8x2 + 9x – 3x2 – 4x – 9x – 12 = 0
⇒ 5x2 – 4x – 12 = 0
⇒ 5x2 – 10x + 6x – 12 = 0
⇒ 5x(x – 2) + 6(x – 2) = 0
⇒ (5x + 6) (x – 2) = 0
⇒ 5x + 6 = 0 (or) x – 2 = 0 – 6
⇒ x = \(\frac{-6}{5}\) (or) x = 2
∴ The value of x = 2 will make DE // AB.

Question 5.
In ∆ABC, DE // BC. AD = x, DB = x – 2, AE = x + 2 and EC = x – 1. Find the value of x. (AS1) (Page No : 200)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 2
Solution:
Given : In ∆ABC, DE // BC
By Basic Proportionality theorem,
we have
\(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{\mathrm{AE}}{\mathrm{EC}}\)
⇒ \(\frac{x}{x-2}\) = \(\frac{x+2}{x-1}\)
⇒ x(x – 1) = (x + 2) (x – 2)
⇒ x2 – x = x2 – 4
⇒ – x = – 4
∴ x = 4

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

Try This

Question 1.
E and F are points on the sides PQ and PR respectively of ∆PQR. For each of the fol-lowing, state whether. EF || QR or not ? (AS2) (Page No : 197)
i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
Solution:
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 3
Hence, EF is not parallel to QR.

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm
Solution:
Here, \(\frac{\mathrm{PE}}{\mathrm{EQ}}\) = \(\frac{4}{4.5}\) = \(\frac{0.8}{0.9}\) = \(\frac{8}{9}\)
\(\frac{\mathrm{PE}}{\mathrm{RF}}\) = \(\frac{8}{9}\)
\(\frac{\mathrm{PE}}{\mathrm{EQ}}\) = \(\frac{\mathrm{PE}}{\mathrm{RF}}\)
∴ EF // QR
Hence, EF is parallel to QR.

iii) PQ = 1.28 cm, PR = 2.56 cm, PE =1.8 cm and PF = 3.6 cm
Solution:
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 4
Given, PQ = 1.28 cm, PE = 1.8 cm
⇒ EQ = PE – PQ = 1.8 – 1.28
⇒ EQ = 0.52 cm
Also, PR = 2.56 cm, PE = 3.6 cm
FR = PF – PR = 3.6 cm – 2.56 cm
FR = 1.04 cm
Now
\(\frac{\mathrm{PE}}{\mathrm{EQ}}\) = \(\frac{1.8}{0.52}\) = \(\frac{0.9}{0.26}\)
\(\frac{\mathrm{PF}}{\mathrm{FR}}\) = \(\frac{3.6}{1.04}\) = \(\frac{0.9}{0.26}\)
\(\frac{\mathrm{PE}}{\mathrm{EQ}}\) = \(\frac{\mathrm{PF}}{\mathrm{FR}}\)
∴ EF // QR (By converse of Basic proportionality theorem)
Hence, EF is parallel to QR.

Question 2.
In the following figures DE || BC.
i) Find EC (AS1) (Page No : 198)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 5
Solution:
\(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{\mathrm{AE}}{\mathrm{EC}}\)
⇒ \(\frac{1.5}{3}\) = \(\frac{\mathrm{1}}{\mathrm{EC}}\)
∴ EC = \(\frac{3}{1.5}\) = 2 cm

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

ii) Find AD
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 5
Solution:
\(\frac{\mathrm{AD}}{\mathrm{DB}}\) = \(\frac{\mathrm{AE}}{\mathrm{EC}}\)
⇒ \(\frac{\mathrm{AD}}{7.2}\) = \(\frac{1.8}{5.4}\)
∴ AD = \(\frac{1.8}{5.4}\) × 7.2 = latex]\frac{12.96}{5.4}[/latex] = 2.4 cm.

Think – Discuss

Question 1.
Can you give some more examples from your daily life where scale factor is used ? (AS3) (Page No : 192)
Solution:
Scale factor is used in drawing maps, designing machines and in sculpture, etc.

Question 2.
Can you say that a square and a rhombus are similar ? Discuss with your friends. Write why the conditions are not sufficient. (AS2) (Page No : 193)
Solution:
A square ☐ ABCD and a rhombus
▱ PQRS are not similar.
Though the ratio of their corresponding sides are equal, the corresponding angles are not equal.
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 7
But ∠A ≠ ∠P; ∠B ≠ ∠Q, ∠C ≠ ∠R; ∠D ≠ ∠S

Try This

Question 1.
Are the triangles formed in each figure similar ? If so, name the criterion of similarity. Write the similarity relation in symbolic form. (AS3) (Page No : 207)
i)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 8
!! ∠G = ∠I alt.int.angles for the ∠F = ∠K parallel lines GF // KI
Solution:
∆GHF and ∆lKH are similar by ASA similarity rule.
∆GHF ~ ∆lKH

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

ii)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 9
Solution:
∆PQR and ∆LMN
\(\frac{\mathrm{LM}}{\mathrm{PQ}}\) = \(\frac{3}{6}\) = \(\frac{1}{2}\)
\(\frac{\mathrm{MN}}{\mathrm{QR}}\) = \(\frac{4}{10}\) = \(\frac{2}{5}\)
\(\frac{\mathrm{LM}}{\mathrm{PQ}}\) ≠ \(\frac{\mathrm{MN}}{\mathrm{QR}}\)
∆PQR is not similar to ∆LMN

iii)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 10
Solution:
∠A = ∠A (Common)
\(\frac{\mathrm{AX}}{\mathrm{XB}}\) = \(\frac{2}{3}\) ; \(\frac{\mathrm{AY}}{\mathrm{YC}}\) = \(\frac{2}{3}\)
\(\frac{\mathrm{AX}}{\mathrm{XB}}\) = \(\frac{\mathrm{AY}}{\mathrm{YC}}\)
∆ABC and ∆AXY are similar by SAS similarity condition.
∆ABC ~ ∆AXY

iv)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 11
Solution:
\(\frac{\mathrm{AP}}{\mathrm{PB}}\) = \(\frac{3}{5}\) ; \(\frac{\mathrm{AJ}}{\mathrm{JC}}\) = \(\frac{2}{3 \frac{1}{3}}\)
= \(\frac{2}{10 / 3}=\frac{2 \times 3}{10}=\frac{6}{10}=\frac{3}{5}\)
\(\frac{\mathrm{AP}}{\mathrm{PB}}\) = \(\frac{\mathrm{AJ}}{\mathrm{JC}}\)
∆ABC and ∆APJ are similar.

v)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 12
Solution:
∆AOQ and ∆BOP are similar by AA criterion. ∆AOQ ~ ∆BOP

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

vi)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 13
Solution:
∆ABC and ∆PQR are similar AAA Similarity condition
∆ABC ~ ∆QPR

vii)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 14
Solution:
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 15
∆ABC and ∆PQR are not similar.

viii)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 16
Solution:
∆ABC and ∆PQR are not similar.

Question 2.
If pairs of the triangles are similar and then find the value of x. (AS1, AS2) (Page No : 207)
i)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 17
Solution:
Gwen : In ∆PQR and ∆LTS
∠Q = ∠T
∠R = ∠S
∴ ∠P = ∠T
(by angle sum property of triangles)
Hence, ∆PQR ~ ∆LTS [∵ AAA]
Then \(\frac{\mathrm{PQ}}{\mathrm{LT}}\) = \(\frac{\mathrm{QR}}{\mathrm{TS}}\) = \(\frac{\mathrm{PR}}{\mathrm{LS}}\)
∴ \(\frac{3}{4.5}\) = \(\frac{5}{\mathrm{x}}\)
3x = 5 × 4.5
⇒ x = \(\frac{5 \times 4.5}{3}\) = 5 × 1.5 = 7.5

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

ii)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 18
Solution:
Given : In ∆ABC and ∆PQC
∠B = ∠Q
[∵ ∠PQC = 180° – 110° = 70° – linear pair of angles]
∠C = ∠C [∵ common]
∴ ∠A = ∠P
[ ∵ Angle sum property of triangles]
∴ ∆ABC ~ ∆PQC (by AAA similarity condition).
Then the ratio of their corresponding sides are equal.
∴ \(\frac{\mathrm{AB}}{\mathrm{PQ}}\) = \(\frac{\mathrm{BC}}{\mathrm{QC}}\) = \(\frac{\mathrm{AC}}{\mathrm{PC}}\)
\(\frac{5}{\mathrm{x}}\) = \(\frac{6}{3}\)
⇒ x = \(\frac{5 \times 3}{6}\) = 2.5

ii)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 19
Solution:
Given : In ∆ABC and ∆ECD
∠A = ∠E
∠ACB = ∠ECD [∵ Vertically opposite angles]
∴ ∠B = ∠D [∵ Angles um property of triangles]
∴ ∆ABC ~ ∆ECD by AAA rule.
Hence, \(\frac{\mathrm{AB}}{\mathrm{ED}}\) = \(\frac{\mathrm{BC}}{\mathrm{CD}}\) = \(\frac{\mathrm{AC}}{\mathrm{EC}}\)
\(\frac{24}{14}\) = \(\frac{22}{\mathrm{x}}\)
⇒ x = \(\frac{22 \times 14}{24}\) = 12.83

iv)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 20
Solution:
Given : In ∆RAB and ∆RST
∠R = ∠R (common)
∠A = ∠S and ∠B = ∠T [∵ Pair of corresponding angles for AB // ST]
∴ ∆RAB ~ ∆RST [∵ AAA similarity]
∴ \(\frac{\mathrm{RA}}{\mathrm{RS}}\) = \(\frac{\mathrm{AB}}{\mathrm{ST}}\) = \(\frac{\mathrm{RB}}{\mathrm{RT}}\)
\(\frac{6}{8}\) = \(\frac{9}{\mathrm{x}}\)
[from the figure, RS = 6 + 2 = 8]
⇒ x = \(\frac{9 \times 8}{6}\) = 12

v)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 21
Solution:
Given: In ∆PQR and ∆PMN
∠P = ∠P (∵ Common)
∠Q = ∠M
(∵ Pair of corresponding angles for MN // OR]
∠R = ∠N
∴ ∆PQR ~ ∆PMN [∵ AAA similarity]
∴ \(\frac{\mathrm{PQ}}{\mathrm{PM}}\) = \(\frac{\mathrm{QR}}{\mathrm{MN}}\) = \(\frac{\mathrm{PR}}{\mathrm{PN}}\)
\(\frac{15}{5}\) = \(\frac{4+x}{4}\)
[From the figure, PR = 4 + x]
⇒ 3 × 4 = 4 + x
∴ x = 12 – 4 = 8

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

vi)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 22
Solution:
Given : In ∆XYZ and ∆XBA
∠X = ∠X (∵ Common)
∠B = ∠Y [∵ Pair of corresponding angles for AB // ZY]
∴ ∆XYZ ~ ∆XBA [∵ AAA similarity]
Hence, \(\frac{\mathrm{XY}}{\mathrm{XB}}\) = \(\frac{\mathrm{YZ}}{\mathrm{BA}}\) = \(\frac{\mathrm{XZ}}{\mathrm{XA}}\)
\(\frac{18}{12}\) = \(\frac{7.5+x}{x}\)
[from the figure, XZ = 7.5 + X]
\(\frac{3}{2}\) = \(\frac{7.5+x}{x}\)
3x = 15 + 2x
3x – 2x = 15
x = 15

vii)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 23
Solution:
Given : With the given conditions, we can’t find the value of x.
Note: If it is given that ∠A = ∠E then we can say that
∆ABC ~ ∆ EDC (by A.A.A rule)
and \(\frac{\mathrm{AB}}{\mathrm{ED}}\) = \(\frac{\mathrm{BC}}{\mathrm{CD}}\) = \(\frac{\mathrm{AC}}{\mathrm{EC}}\)
⇒ \(\frac{1.6}{\mathrm{x}}\) = \(\frac{1.5}{15}\)
⇒ x = \(\frac{1.6 \times 15}{1.5}\) = 16

viii)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 24
Solution:
Given : Data not sufficient.

Think – Discuss

Question 1.
Discuss with your friends that In what way similarity of triangles is different from similarity of other polygons? (AS3) (Page No. 203)
Answer:
In two triangles if the corresponding angles are equal then they are similar, whereas in two polygons if the corresponding angles are equal, they may not be similar.
i.e., In triangles,
(Pairs of corresponding angles are equal) ⇔ (Ratio of corresponding sides are equal).
But this is not so with respect to polygons.

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

Do This

Question 1.
In ∆ACB, ∠C = 90° and CD ⊥ AB. Prove that \(\frac{\mathrm{BC}^2}{\mathrm{AC}^2}\) = \(\frac{\mathrm{BC}}{\mathrm{AC}}\) (AS2) (Page No. 218)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 25
Solution:
Proof : ∆ADC and ∆CDB are similar
∴ \(\frac{\Delta \mathrm{ADC}}{\Delta \mathrm{CDB}}\) = \(\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{DC}}{\frac{1}{2} \times \mathrm{BD} \times \mathrm{DC}}\) = \(\frac{\mathrm{AD}}{\mathrm{BD}}\)
⇒ \(\frac{\Delta \mathrm{CDB}}{\Delta \mathrm{ADC}}\) = \(\frac{\mathrm{BC}}{\mathrm{AD}}\) ……………. (1)
(or) \(\frac{\Delta \mathrm{CDB}}{\Delta \mathrm{ADC}}\) = \(\frac{\mathrm{BC}^2}{\mathrm{AC}^2}\) ………….. (2)
[Ratio of areas of similar triangles is equal to the ratio of squares of their corresponding sides.]
From (1) and (2),
\(\frac{\mathrm{BC}}{\mathrm{AD}}\) = \(\frac{\mathrm{BC}^2}{\mathrm{AC}^2}\) (Q.E.D)

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

Question 2.
A ladder 15m long reaches a window which is 9m above the ground on one side of a street. Keeping its foot at the same point, the ladder is turned to other side of the street to reach a window 12m high. Find the width of the street. (AS4) (Page No : 218)
Solution:
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 26
Let A and D be the windows on the either sides of the street.
From Pythagoras theorem,
AC2 = AB2 + BC2
152 = 92 + BC2
BC2 = 225 – 81
BC = \(\sqrt{144}\) = 12 ……………… (1)
Also,
CD2 = DE2 + CE2
152 = 122 + CE2
CE2 = 225 – 144
CE = \(\sqrt{81}\) = 9
∴ BE = BC + CE
= 12 + 9 = 21
∴ Width of the street = 21 m

Question 3.
In the given fig. if AD ⊥ BC, prove that AB2 + CD2 = BD2 + AC2. (AS2) (Page No : 219)
TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions 27
Solution:
Given : In ∆ABC, AD ⊥ BC
R.T.P. : AB2 + CD2 = BD2 + AC2
Proof : ∆ABD is a right angled triangle.
AB2 – BD2 = AD2 …………….. (1)
∆ACD is a right angle triangle.
AC2 – CD2 = AD2 ……………. (2)
From (1) and (2)
AB2 – BD2 = AC2 – CD2
AB2 + CD2 = BD2 + AC2

Think – Discuss

Question 1.
For a right angled triangle with integer sides atleast one of its measurements must be an even number. Why ? Discuss with your friends and teachers. (AS3) (Page No : 215)
Solution:
Given : A right triangle with integer sides.
To discuss : At least one measurement must be an even number.
Case – (i) : If the measurements of the sides are 3, 4, 5 – Primitive Pythagorean tripplet then one measurement ‘4’ is even and the given statement is true.

Case – (ii) : If the measurements are an integer multiple of primitive i.e., 3n, 4n and 5n then also ‘4n’ is even [irrespective of n-even / odd]
∴ Given statement is true.

TS 10th Class Maths Solutions Chapter 8 Similar Triangles InText Questions

Case – (iii) : If one measurement ‘n’ is odd, then n, \(\frac{\mathrm{n}^2+1}{2}\) and \(\frac{\mathrm{n}^2-1}{2}\) are the measurements of the sides, then also \frac{\mathrm{n}^2-1}{2} is even. [∵ n = 2k + 1]
n2 = (2k + 1)2 = 4k2 + 4k + 1
n2 – 1 = 4k2 + 4k + 1 – 1
= 4(k2 + k)
= 2(2k2 + 2k) [even]
∴ In any case the given statement is true.