TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations important questions

Students must practice these TS Inter 1st Year Maths 1A Important Questions Chapter 6 Trigonometric Ratios up to Transformations to help strengthen their preparations for exams.

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations Important Questions

Question 1.
Prove that \(\frac{\cos 9^{\circ}+\sin 9^{\circ}}{\cos 9^{\circ}-\sin 9^{\circ}}=\cot 36^{\circ}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 1

Question 2.
Find the period of the function defined by f (x) = tan (x+ 4x + 9x+…………+ n2x)
Solution:
The given function is
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 2

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 3.
If A is not an integral multiple of \(\frac{\pi}{2}\), prove that
(i) tan A + cot A = 2 cosec 2A
(ii) cot A – tan A = 2 cot 2A
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 3
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 4

Question 4.
If ABC are angle of a triangle then prove that
\(\begin{aligned} \sin ^2 \frac{A}{2} & +\sin ^2 \frac{B}{2}-\sin ^2 \frac{C}{2} \\
& =1-2 \cos \frac{A}{2} \cos \frac{B}{2}-\sin ^2 \frac{C}{2} \end{aligned}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 5

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 5.
If tan 20° = λ then show that
\(\frac{\tan 160^{\circ}-\tan 110^{\circ}}{1+\tan 160^{\circ} \tan 110^{\circ}}=\frac{1-\lambda^2}{2 \lambda}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 6

Question 6.
If \(\cos \theta+\sin \theta=\sqrt{2} \cos \theta\) then show that \(\cos \theta-\sin \theta=\sqrt{2} \sin \theta\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 7

Question 7.
Show that cos 340° cos 40° + sin 200° sin 140°=\(\frac{1}{2}\)
Solution:
LH.S = cos 3400 cos 40° + sin 2000 sin 140°
= cos (360 – 20°) cos 40° + sin (180 + 20°) sin (180 – 40°)
= cos 20° cos 40° – sin 20° sin 40°
= cos (20° + 40°) = cos 60° = R.H.S

Question 8.
Find the value of tan 100° + tan 125° + tan 100° + tan 125°
Solution:
We have tan 100° + tan 125° = 225
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 8
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 9

Question 9.
Prove that tan 500° – tan 400° = 2 tan 10°
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 10

Question 10.
Show that cos 42° + cos 78° + cos 162° = 0
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 11

Question 11.
Find the value of \(\cos ^2 52 \frac{1}{2}^{\circ}-\sin ^2 22 \frac{1}{2}^{\circ}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 12

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 12.
If A+B+C= \(\frac{\pi}{2}\) then show that cos A + cos B + cos C
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 13

Question 13.
If tanθ=\(\frac{b}{a}\) then prove that a cos bθ + b sinθ = a
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 14

Question 14.
If A + B + C = 1800 than show that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
Solution:
A+B+C=180°
⇒ sin (A + B) = sin C
L.H.S = sin 2A sin 2B + sin 2C
\(=2 \sin \left(\frac{2 \mathrm{~A}+2 \mathrm{~B}}{2}\right) \cos \left(\frac{2 \mathrm{~A}-2 \mathrm{~B}}{2}\right)+\sin 2 \mathrm{C}\)
= 2 sin (A+B) cos (A – b) + 2 sin C cos C
= 2 sin C cos(A-B) + 2 sinC cosC
= 2 sin C [ cos (A –  B) + cos C]
= 2 sinC [cos(A – B) – cos(A+B)
= 2 sinC (2 sin A sin B)= 4 sin A sin B sin C
= R.H.S

Question 15.
If A, B, C and angles in a triangle then prove that cos A + cos B + cos C
\(=1+4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 15

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 16.
If ABC are the angles in a triangle then prove that \(\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}=1+4 \sin \left(\frac{\pi-A}{4}\right) \sin \left(\frac{\pi-B}{4}\right) \sin \left(\frac{\pi-C}{4}\right)\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 16
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 17

Question 17.
Find the values of
i) sin \(\frac{5 \pi}{3}\)
ii) tan (885)°
iii) sec \(\left(\frac{13 \pi}{3}\right)\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 20

Question 18.
Simplify
(i) \(\cot \left(\theta-\frac{13 \pi}{3}\right)\)
(ii) \(\tan \left(-23 \frac{\pi}{3}\right)\)
Solution:
(i) \(\cot \left(\theta-\frac{13 \pi}{3}\right)\)
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 21

(ii) \(\tan \left(-23 \frac{\pi}{3}\right)\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 22

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 19.
Find the value of \(\begin{aligned} \sin ^2 \frac{\pi}{10} & +\sin ^2 \frac{4 \pi}{10}+ \sin ^2 \frac{6 \pi}{10}+\sin ^2 \frac{9 \pi}{10} \end{aligned}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 24

Question 20.
If sinθ= \(\frac{4}{5}\) and θ is not in the first quadrant, find the value of cos θ
Solution:
Since θ is not in the first quadrant and sin θ >0 we have 90°< θ < 180°
∴  \(\cos \theta=\sqrt{1-\sin ^2 \theta}=\sqrt{1-\frac{16}{25}}=-3 / 5\)

Question 21.
If sec θ+tan θ=\(\frac{2}{3}\) find the value of sin θ and determine the quadrant in which θ lies.
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 25
Since tan θ is negative, sec θ is positive
∴ θ lies in fourth quadrant.

Question 22.
Prove that \(\begin{array}{r} \cot \frac{\pi}{16} \cdot \cot \frac{2 \pi}{16} \cdot \cot \frac{3 \pi}{16} \cdots \\ \cot \frac{7 \pi}{16}=1 \end{array}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 26

Question 23.
If 3 sin θ + 4 cos θ = 5 then find the value of 4 sinθ  – 3 cos θ.
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 27

Question 25.
Prove that (tanθ + cot θ)2 = sec2θ + cosec2θ = sec2 θ cosec2θ
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 29

Question 26.
If  cos θ > θ , tan θ+ sin θ = m and tan θ – sin θ = n then show that m2 – n2 = \(4 \sqrt{m n}\)
Solution:
Given that m = tan θ + sin θ
n tan θ – sin θ
∴ m+ n = 2tanθ,m – n= 2 sinθ
and (m + n)(m – n) = 4 tanθ sinθ
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 30

Question 27.
Find the rules of sin 75°, cos 75°, tan 75° and cot 75°
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 31

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 28.
Prove that \(\sin ^2 52 \frac{1}{2}^{\circ}-\sin ^2 22 \frac{1}{2}^{\circ}=\frac{\sqrt{3}+1}{4 \sqrt{2}}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 32

Question 29.
Prove that tan 700 tan 200 = 2 tan 50°
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 33

Question 30.
Express \(\sqrt{3} \sin \theta\) sinθ + cosθ as a sine of an angle
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 34

Question 31.
Prove that \(\sin ^2 \theta+\sin ^2\left(\theta+\frac{\pi}{3}\right)+\sin ^2\left(\theta-\frac{\pi}{3}\right)=\frac{3}{2}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 35

Question 32.
Let ABC be a triangle such that \(\cot A+\cot B+\cot C=\sqrt{3}\) then prove that ABC is an equilateral triangle.
Solution:
Given that \(\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}\)
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 36
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 37

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 33.
Suppose x= tan A, y = tan B, z = tan C Suppose none of A,B,C,A-B,B-C, is an odd multiple of \(\frac{\pi}{2}\) then prove that \(\Sigma\left(\frac{x-y}{1+x y}\right)=\Pi\left(\frac{x-y}{1+x y}\right)\)
Solution:
\(\frac{1}{2}^{\circ}\) lies in first quadrant and hence all ratios are position.
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 38
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 39
Question 35.
Find the rules of
(i) \(\sin 67 \frac{1}{2}^{\circ}\)
(ii) \(\cos 67 \frac{1}{2}^{\circ}\)
(iii) \(\tan 67 \frac{1}{2}^{\circ}\)
(iv) \(\cot 67 \frac{1}{2}^{\circ}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 40

Question 36.
Simplify \(\frac{1-\cos 2 \theta}{\sin 2 \theta}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 41

Question 37.
If \(\cos A=\sqrt{\frac{\sqrt{2}+1}{2 \sqrt{2}}}\) find the value of cos 2A
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 43

Question 38.
If \(\cos \theta=-\frac{5}{13}\) and \(\frac{\pi}{2}<\theta<\pi\) find the value of  sin 2θ
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 44

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 39.
For what values of x in the first quadrant \(\frac{2 \tan x}{1-\tan ^2 x}\) is positive?
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 45

Question 40.
If \(\cos \theta=-3 / 5\) and \(\pi<\theta<\frac{3 \pi}{2}\) find the value of \(\tan \frac{\theta}{2}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 46

Question 41.
If θ is not an integral multiple of \(\frac{\pi}{2}\) prove that tanθ + 2 tan 2θ + 4 tan 4θ + 8 cot 8θ = cot θ.
Solution:
We have cotA –  tan A = 2 cot 2A
tan A = cot A – 2 cot 2A
tanθ+ 2tan2θ+4tan4θ+8cot8θ
= (cotθ  – 2 cot 2θ) +2 (cot 2θ – 2 cot 4θ) + 4 (cot 4θ – 2 cot 8θ) + 8 cot 8θ= cot θ

Question 42.
For A∈R prove that
(i) sin A sin \(\left(\frac{\pi}{3}+A\right) \sin \left(\frac{\pi}{3}-A\right)=\frac{1}{4}\) sin 3A
(ii) cos A cos \(\left(\frac{\pi}{3}+A\right) \cos \left(\frac{\pi}{3}-A\right)=\frac{1}{4}\) cos 3A
iii) sin 20° sin 40° sin 60° sin 80° = \(\frac{3}{16}\)
iv) \(\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{3 \pi}{9} \cos \frac{4 \pi}{9}=\frac{1}{16}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 47
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 48
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 49

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 43.
If 3A is not an odd multiple of \(\frac{\pi}{2}\), prove that tan A tan(60+A) tan(60-A) = tan 3A and hence find the value of \(\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 50

Question 44.
For α,β∈R prove that (cosα + cosβ)2 + (sinα +sinβ)2 = 4 cos2 \(\left(\frac{\alpha-\beta}{2}\right)\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 51

Question 45.
If a, b, c are non-zero real numbers and a, are solutions of the equation a cosθ + b sinθ=c then show that
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 52
Solution:
Given acosθ + bsinθ = c
a cos θ = c  b sin e
= a2 cos2θ = C2 –  2bc sin θ + b2 sin2 θ
⇒ a2 (1 – sin2 θ) = c2 – 2bc sin θ + b2 sin2 θ
⇒ (b+a) sin2 θ- 2bc sinθ + (C2 – a2) = θ
This is a quadrant equation in sin θ and suppose sin α, sin β are roots of the equation
∴ given α, β are solutions of the equation
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 53

Question 46.
If θ is not an odd multiple of \(\frac{\pi}{2}\) and \(\cos \theta=-\frac{1}{2}\) prove that \(\frac{\sin \theta+\sin 2 \theta}{1-\cos \theta+\cos 2 \theta}=\tan \theta\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 54

Question 47.
Prove that
\(\sin ^4 \frac{\pi}{8}+\sin ^4 \frac{3 \pi}{8}+\sin ^4 \frac{5 \pi}{8}+\sin ^4 \frac{7 \pi}{8}=\frac{3}{2}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 55

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 48.
If none of 2A and 3A is an odd multiple of \(\frac{\pi}{2}\) then prove that
tan 3A tan 2A tanA = tan 3A – tan 2A – tan A
Solution:
We have 3A = 2A+A
∴ tan 3A = tan (2A+A)
\(=\frac{\tan 2 A+\tan A}{1-\tan 2 A \tan A}\)
⇒ tan 2A + tan A tan 3A (1 – tan 2A tanA)
⇒ tan A tan2A tan 3A = tan 3A – tan 2A – tan A

Question 49.
Prove tant sin 78° + cos 132° = \(\frac{\sqrt{5}-1}{4}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 56

Question 50.
Prove tant sin 21° cos 9° – cos 84°  cos 6°  = \(\frac{1}{4}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 57

Question 51.
Find the value of sin 34° + cos 64°- cos 4°
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 58

Question 52.
Prove that cos2 76°+cos2 16°- cos 76° cos 16° \(=\frac{3}{4}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 59

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 53.
If a, b ≠ 0 and sin x+sin y=a and cos x+cos y=b find two values of
(i) \(\tan \left(\frac{x+y}{2}\right)\)
ii) \( \sin \left(\frac{x-y}{2}\right)\) is terms of a and b
Sol.
i) Given sin x+sin y=a and cos x+cos y=b we have
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 61

ii) consider
a2. b2 = (sin x + sin y)2 + (cos x + cos y)2
= sin2x + cos2 x + sin2 y cos2 y
+ 2 (sin x sin y + cos x cos y)
= 2. 2 cos (x – y)
= 2[1 .cos (x-y)]
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 62

Question 54.
Prove that cos 12°+ cos 84°+cos 132°+cos 156°
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 63

Question 55.
Show that for any 0∈ R \(4 \sin \frac{5 \theta}{2} \cos \frac{3 \theta}{2} \cos 3 \theta \) sinθ – sin 2θ+ sin 4θ +sinθ
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 64
⇒ 2 cos 3θ [ sin 4θ + sin θ]
⇒ 2 cos 3θ sin 4θ + 2 cos 3θ sin θ
⇒ sin (4θ + 3θ) sin (4θ – 3θ) + sin 4θ + sin (-2θ)
⇒ sin7θ+ sinθ + sin4θ – sin2θ
⇒ sin θ – sin 2θ+ sin 4θ – sin 7θ = R. H. S.

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 56.
If none of A, B, A + B is an integral multiple of π, then prove that
\(\begin{aligned} \frac{1-\cos A+\cos B-\cos (A+B)}{1+\cos A-\cos B-} & \cos (A+B) \\ =\tan \frac{A}{2} \cot \frac{B}{2} \end{aligned}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 65
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 66

Question 57.
For any α∈R prove that cos2
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 67
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 68

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 58.
Suppose (α-β) is not an odd multiple of \(\frac{\pi}{2}\), m is a non zero number such that m ≠ – 1 and \(\frac{\sin (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{1-m}{1+m} \quad\) then prove that \(\tan \left(\frac{\pi}{4}-\alpha\right)=m \cdot \tan \left(\frac{\pi}{4}+\beta\right)\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 69
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 70
Question 59.
If A,B, C are the angles of a triangle prove that sin 2A + sin 2B – sin 2C 4 cos A cos B sin C
Solution:
Given A, B, C are the angles of a triangle
A+B+C= π
∴ sin 2A + sin 2B – sin 2C
= sin 2A + 2cos (B + C) sin (B-C)
= sin 2A-2cosAsin (B-C)
=2 sinA cosA-2cosA sin(B – C)
= 2 cosA [sinA-sin(B  – C)]
= 2 cosA [sin(B+C)-sin(B-C)]
= 2 cos A (2 cos B sin C)
= 4 cos A cos B sin C

Question 60.
If A, B, C are angles of a triangle prove that cos 2A + cos 2B – cos 2C = 1 – 4 sin A sin B cos C
Solution:
Given A + B + C = it, we have
cos 2A + cos 2B – cos 2C
=cos2A – 2sin (B+C) sin(B-C)
cos2A – 2sinA sin(B-C)
=1 – 2 sin2A – 2sinA sin(B – C)
= 1 – 2 sinA [sin A + sin (B-C)]
= 1 – 2 sinA [sin (B+C) + sin (B-C)]
= 1 – 2 sinA (2 sin B cos C)
= 1 – 4 sin A sin B cos

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 61.
If A, B, C are angles in a triangle then prove that
(i) sin A + sin B + sin C = 4 \(\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}\)
(ii) cos A + cos B + cos C = \(1+4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 71
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 72

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 62.
If A+B+C = \(\frac{\pi}{2}\) than show that
sin2 A+ sin2 B+ sin2 C = 1-2 sin A sin B sin C
Solution:
Given A+B + C = \(\frac{\pi}{2}\)
L.H.S = sin2 A + sin2 B + sin2 C
= sin2 A. sin2 B + 1- cos2 C
= 1 + sin2 A – (cos2 C – sin2 B)
= 1 + sin2 A-cos (C-B) cos (C-B)
=1 +sin2A-sinAcos(C-B)
= 1 +sinA [sinA – cos(B-C)]
= 1sinA [cos(B+C) – cos(B-C)]
= 1-sin A [ 2 sin B sin C]
1-2 sin A sin B sin C = R. H. S

Question 63.
If A+B+C=\(\frac{3 \pi}{2}\),prove that
cos2A+cos 2B+cos 2C = 1-4sinA sinB sinC
Solution:
LH.S. = cos2A + cos2B + cos2C
= 2cos(A+B)cos(A-B) +cos2
=-2smCcos(A-B)+ 1-2sm C
[A+B= \(\frac{3 \pi}{2}\) – C=cos(A+B)=-sinC]
=1-2 sin C[cos(A-B).sinC]
= 1-2 sin C[cos(A-B)-cos(A+B)]
= 1-2 sinC[2sinA sinB]
= 1-4 sin A sinB sinC=RH.S

Question 64.
If A,B,C are angles of a triangle then prove that
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 73
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 74
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 75

TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations

Question 65.
IfA+B+C = 0 then prove that
cos2A +cos2 B + cos2C = 1+2 cosA cosB cosC
Solution:
L.H.S = cos A. cos2 B + cos2 C
= cos2 A . cos2 B. + 1 – sin.2 C
= 1 + cos2 A + cos (B + C) cos (B – C)
( ∵ A+B+C = 0 cos(B+C) = cosA)
= 1  + cos2 A + cos A cos (B – C)
= 1+ cosA [cosA+cos(B-C)]
1 – cos A [cos(B+ C) +cos(B-C)]
= 1 +cosA [2 cosB cosC]
= 1 .2 cosA cosB cosC = R.H.S

Question 66.
If A+B+C=2S then prove that
cos (S – A) + cos (S – B) + cos (S – C) + cos S = \(4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}\)
Solution:
TS Inter 1st Year Maths 1A Trigonometric Ratios up to Transformations 76

Leave a Comment