Students must practice these TS Intermediate Maths 1A Solutions Chapter 10 Properties of Triangles Ex 10(b) to find a better approach to solving the problems.
TS Inter 1st Year Maths 1A Properties of Triangles Solutions Exercise 10(b)
(Note : All problems in this exercise have reference to ∆ABC)
I.
Question 1.
Express Σ r1 cot \(\frac{\mathrm{A}}{2}\) in terms of s. (Mar. 2006)
Answer:
We have r1 = s tan \(\frac{\mathrm{A}}{2}\)
∴ Σ r1 cot\(\left(\frac{\mathrm{A}}{2}\right)\)
= Σ s tan\(\left(\frac{\mathrm{A}}{2}\right)\) cot\(\frac{\mathrm{A}}{2}\)
= Σs = s + s + s = 3s
Question 2.
Show that Σ a cot A = 2 (R + r).
Answer:
L.H.S. = Σ a cot A
= Σ 2R sin A \(\frac{\cos A}{\sin A}\)
= Σ 2R cos A
= 2R Σ cos A
= 2R (cos A + cos B + cos C)
Question 3.
In ∆ ABC, prove that
r1 + r2 + r3 – r = 4R (Mar. 2006)
Answer:
Question 4.
In ∆ ABC, prove that
r + r1 + r2 – r3 = 4R cos C. (May 2006)
Answer:
Question 5.
If r + r1 + r2 = r3, then show that C = 90°
Answer:
Given r + r1 + r2 = r3
We have given that r1 + r2 = r3 – r
r1 + r2 = 4R sin\(\frac{\mathrm{A}}{2}\) cos\(\frac{\mathrm{B}}{2}\) cos\(\frac{\mathrm{C}}{2}\) + 4R sin\(\frac{B}{2}\) cos\(\frac{C}{2}\) cos\(\frac{A}{2}\)
II.
Question 1.
Prove that
4 (r1r2 + r2r3 + r3r1) = (a + b + c)2
Answer:
r1r2 + r2r3 + r3r1
Question 2.
Prove that
\(\left(\frac{1}{r}-\frac{1}{r_1}\right)\left(\frac{1}{r}-\frac{1}{r_2}\right)\left(\frac{1}{r}-\frac{1}{r_3}\right)=\frac{a b c}{\Delta^3}=\frac{4 R}{r^2 s^2}\)
Answer:
Question 3.
Prove that r(r1 + r2 + r3) = ab + bc + ca – s2 – s2
Answer:
L.H.S. = r(r1 + r2 + r3)
= \(\frac{\Delta^2}{\Delta^2}\) [(s2 + s2 + s2) – s(b + c) – s(a + c) – s (a + b) + bc + ca + ab]
= [3s2 – 2s (a + b + c) + bc + ca + ab]
= 3s2 – 2s (2s) + ab + bc + ca
= ab + bc + ca – s2
= R.H.S.
Question 4.
Show that \(\Sigma \frac{r_1}{(s-b)(s-c)}=\frac{3}{r}\).
Answer:
Question 5.
Show that
(r1 + r2) tan\(\frac{C}{2}\) = (r3 – r)cot\(\frac{C}{2}\) = c.
Answer:
Question 6.
Show that
r1 r2 r3 = r3 cot2\(\frac{A}{2}\) cot2\(\frac{B}{2}\) cot2\(\frac{C}{2}\)
Answer:
III.
Question 1.
Show that cos A + cos B + cos C = 1 + \(\frac{\mathbf{r}}{\mathbf{R}}\)
Answer:
Question 2.
Show that cos2\(\frac{A}{2}\) + cos2\(\frac{B}{2}\) + cos2\(\frac{C}{2}\) = 2 + \(\frac{\mathbf{r}}{2 R}\). (Mar. 2005)
Answer:
Question 3.
Show that
sin2\(\frac{A}{2}\) + sin2\(\frac{B}{2}\) + sin2\(\frac{C}{2}\) = 1 – \(\frac{r}{2 R}\)
Answer:
Question 4.
Show that
(i) a = (r2 + r3) \(\sqrt{\frac{r r_1}{r_2 r_3}}\)
Answer:
(ii) ∆ = r1r2\(\sqrt{\frac{4 R-r_1-r_2}{r_1+r_2}}\)
Answer:
Question 5.
Prove that
r12 + r22 + r32 + r2 = 16R2 – (a2 + b2 + c2).
Answer:
(r1 + r2 + r3 – r)2 = [(r1 + r2 + r3 – r]2
= (r1 + r2 + r3)2 – 2r(r1 + r2 + r3)r + r2
= (r12 + r22 + r32 + r2) – 2r(r1 + r2 + r3) + 2(r1 r2 + r2 r3 + r3 r1)
But using results r1 + r2 + r3 – r = 4R and
r1 r2 + r2r3 + r3r1 = s2
We have 16R2 = (r12 + r22 + r32 + r2) – 2r(r1 + r2 + r3) + 2s2 …………………….. (1)
Now 2r(r1 + r2 + r3)
= 2 (ab + bc + ca) – 2s2
= 2(ab + bc + ca – s2) ……………….. (2)
∴ From (1)
r12 + r22 + r32 + r2 = 16R2 + 2(ab + bc + ca – s2) – 2s2
= 16R2 + 2(ab + bc + ca) – 4s2
= 16R2 = [4s2 – 2 (ab + bc + ca)]
= 16R2 – {(a + b + c)2 – 2(ab + bc + ca)}
= 16R2 – (a2 + b2+ c2)
Question 6.
If P1, P2, P3 are altitudes drawn from vertices A, B, C to the opposite sides of a triangle respectively, then show that
(i) \(\frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}=\frac{1}{r}\)
(ii) \(\frac{1}{p_1}+\frac{1}{p_2}-\frac{1}{p_3}=\frac{1}{r_3}\) and
(iii) P1.P2.p3 = \(\frac{(a b c)^2}{8 R^3}=\frac{8 \Delta^3}{a b c}\) (Mar.2010)
Answer:
(i)
(ii)
(iii)
Question 7.
If a = 13, b = 14, c = 15 show that R = \(\frac{65}{8}\) r = 4, r1 = \(\frac{21}{2}\), r2 = 12 and r3 = 14. (Mar. 14) (Board New Model Paper) (March 2015-A.P)
Answer:
Given a = 13, b = 14, c = 15
We have s = \(\frac{a+b+c}{2}\) = \(\frac{13+14+15}{2}\) = 21
s – a = 21 – 13 = 8; s – b = 21 – 14 = 7;
s – c = 21 – 15 = 6
∴ The values are R = \(\frac{65}{8}\), r = 4, r1 = \(\frac{21}{2}\), r2 = 12 and r3 = 14.
Question 8.
If r1 = 2, r2 = 3, r3 = 6 and r = 1, Prove that a = 3, b = 4 and c = 5. (March 2015-T.s) (Mar. 09, Oct. 97)
Answer:
We have given r = 1, r1 = 2, r2 = 3 and r3 = 6 and ∆2 = r . r1.r2.r3 = (1) (2) (3) (6) = 36
⇒ ∆ = 6
Now r = \(\frac{\Delta}{s}\) ⇒ s = \(\frac{\Delta}{r}\) = 6
r1 = \(\frac{\Delta}{s-a}\) ⇒ 2 = \(\frac{6}{s-a}\)
⇒ s – a = 3 ⇒ 6 – a = 3 ⇒ a = 3
r1 = \(\frac{\Delta}{s-b}\) ⇒ 2 = \(\frac{6}{s-b}\)
⇒ s – b = 2
⇒ b = 4
r1 = \(\frac{\Delta}{s-c}\) ⇒ 2 = \(\frac{6}{s-c}\)
⇒ s – c = 1
⇒ c= 5
∴ a= 3, b = 4, c = 5.