Students must practice this TS Intermediate Maths 2A Solutions Chapter 1 Complex Numbers Ex 1(a) to find a better approach to solving the problems.
TS Inter 2nd Year Maths 2A Solutions Chapter 1 Complex Numbers Exercise 1(a)
I. Question 1.
 If z1 =(2, – 1); z2 = (6, 3) find z1 – z2.
 Solution:
 z1 = 2 – i; z2 = 6 + 3i
 z1 – z2 = (2 – i) – (6 + 3i)
 = (2 – 6) + (- 1 – 3)i
 = – 4 – 4i (or)
 z1 – z2 = (- 4, – 4).
Question 2.
 If z1 = (3, 5) and z2 = (2, 6) find z1 . z2.
 Solution:
 z1 = 3 + 5i; z2 = 2 + 6i
 z1 . z2 = (3 + 5i) (2 + 6i)
 = 6 + 18i + 10i + 30i2
 = 6 – 30 + 28i
 = – 24 + 28i = (- 24, 28).

Question 3.
 Write the additive inverse of the following complex nwnbers:
 i) (√3, 5)
 ii) (- 6, 5) + (10, – 4)
 iii) (2, 1) (- 4, 6)
 Solution:
 i) z1 = √3 + 5
 a + ib is additive inverse then
 z1 + a + ib = 0 + 0i
 (√3 + a) + (5 + b)i = 0 + 0i
 a = – √3, b = – 5
 ∴ Additive inverse of z1 is – √3 – 5i (- √3, – 5).
ii) z1 = – 6 + 5i; z2 = 10 – 4i
 z1 + z2 = (- 6 + 10) + i (5 – 4) = 4 + i.
 Additive inverse be a + ib
 (z1 + z2) + a + ib = 0 + 0i
 (4 + a) + (1 + b)i = 0 + 0i
 a = – 4
 b = – 1
 ∴ – 4 – i = (- 4, – 1)
iii) z1 = 2 + i; z2 = – 4 + 6i
 z1z2 = (2 + i) (- 4 + 6i)
 = – 8 + 12i – 4i + 6i2
 = – 8 – 6 + 8i
 = – 14 + 8i
 z1z2 + a + ib = 0 + 0i
 (- 14 + a) + (8 + b) i = 0 + 0i
 a = 14, b = – 8
 ∴ Additive inverse of z1z2 be 14 – 8i or (14, – 8).

II. Question 1.
 If z1 = (6, 3); z2 =(2,- 1) find z1/z2.
 Solution:
 z1 = 6 + 3i; z2 = 2 – i

Question 2.
 If z = (cos θ, sin θ) find z – \(\frac{1}{z}\).
 Solution:
 z – \(\frac{1}{z}\) = (cos θ + i sin θ) – \(\)
 = cos θ + i sin θ – \(\frac{(\cos \theta-i \sin \theta)}{(\cos \theta+i \sin \theta)(\cos \theta-i \sin \theta)}\)
 = cos θ + i sin θ – \(\frac{(\cos \theta-i \sin \theta)}{\left(\cos ^2 \theta+\sin ^2 \theta\right)}\)
 = 2i sin θ
 = θ + 2i sin θ
 = (0, 2 sin θ).

Question 3.
 Write the multiplicative inverse of the following complex numbers:
 i) (3, 4)
 ii) (sin θ, cos θ)
 iii) (7, 24)
 iv)(- 2, 1)
 Solution:
 i) z1 = 3 + 4i
 a + ib is multiplicative inverse of z1
 z (a + ib) = 1 + 0i
 a + ib = \(\frac{1}{\mathrm{z}_1}\)
 a + ib = \(\frac{1}{3+4 i}\)
 a + ib = \(\frac{3-4 i}{(3+4 i)(3-4 i)}\)
 = \(\frac{3-4 i}{9+16}=\frac{3}{25}-\frac{4}{25} i\)
 = \(\left(\frac{3}{25}, \frac{-4}{25}\right)\)
ii) z = sin θ + i cos θ
 a + ib is multiplicative inverse of z1
 z1 . (a + ib) = 1 + 0i
 a + ib = \(\frac{1}{\mathrm{z}_1}\)
 = \(\frac{1}{\sin \theta+i \cos \theta}\)
 = \(\frac{\sin \theta-i \cos \theta}{(\sin \theta+i \cos \theta)(\sin \theta-i \cos \theta)}\)
 = \(\frac{\sin \theta-i \cos \theta}{\sin ^2 \theta+\cos ^2 \theta}\)
 = (sin θ, – cos θ).

iii) z1 = 7 + 24i
 a + ib is multiplicative inverse of z1
 z1 . a + ib = 1 + 0i
 a + ib = \(\frac{1}{7+24 i}\)
 = \(\frac{7-24 \mathrm{i}}{(7+24 \mathrm{i})(7-24 \mathrm{i})}\)
 = \(\frac{7-24 i}{49+576}\)
 = \(\frac{7}{625}-\frac{24}{625} 1=\left(\frac{7}{625}, \frac{-24}{625}\right)\)
iv) z1 = – 2 + i
 z1 . (a + ib) = 1 + oi
 z1 = \(\frac{1}{a+i b}\)
 a + ib = \(\frac{1}{z_1}\)
 = \(\frac{1}{-2+1}\)
 = \(\frac{-2-i}{(-2+i)(-2-i)}\)
 = \(\frac{-2-i}{4+1}\)
 = \(\left(\frac{-2}{5}, \frac{-1}{5}\right)\)
