Students must practice these TS Intermediate Maths 1A Solutions Chapter 3 Matrices Ex 3(c) to find a better approach to solving the problems.
TS Inter 1st Year Maths 1A Matrices Solutions Exercise 3(c)
Question 1.
 If A = \(\left[\begin{array}{rrr}
 2 & 0 & 1 \\
 -1 & 1 & 5
 \end{array}\right]\) and B = \(\left[\begin{array}{rrr}
 -1 & 1 & 0 \\
 0 & 1 & -2
 \end{array}\right]\) then find (AB’)’
 Answer:
 We have (AB)’ = B’A’
 and (AB’)’ = (B’)’ A’ = BA’ (∵ (B )’ = B)
 
Question 2.
 If A = \(\left[\begin{array}{rr}
 -2 & 1 \\
 5 & 0 \\
 -1 & 4
 \end{array}\right]\) and B = \(\left[\begin{array}{rrr}
 -2 & 3 & 1 \\
 4 & 0 & 2
 \end{array}\right]\) then find 2A + B’ and 3B’ – A.
 Answer:
 

Question 3.
 If A = \(\left[\begin{array}{cc}
 2 & -4 \\
 -5 & 3
 \end{array}\right]\) then find A + A’ and A. A’ (May 2007) (Board Model Paper)
 Answer:
 
Question 4.
 If A = \(\left[\begin{array}{ccc}
 -1 & 2 & 3 \\
 2 & 5 & 6 \\
 3 & x & 7
 \end{array}\right]\) is a symmetric matrix then find x.
 Answer:
 A matrix ‘A’ is said to be symmetric if A’ = A
 
Question 5.
 If A = \(\left[\begin{array}{ccc}
 0 & 2 & 1 \\
 -2 & 0 & -2 \\
 -1 & x & 0
 \end{array}\right]\) is a skew symmetric matrix, find x. (May 2014, 11)
 Answer:
 A matrix A is said to be skew symmetric if A’ = – A
 \(\left[\begin{array}{ccc}
 0 & -2 & -1 \\
 2 & 0 & \mathrm{x} \\
 1 & -2 & 0
 \end{array}\right]=\left[\begin{array}{ccc}
 0 & -2 & -1 \\
 2 & 0 & 2 \\
 1 & -\mathrm{x} & 0
 \end{array}\right]\)
 from equality of matrix x = 2
Question 6.
 Is \(\left[\begin{array}{ccc}
 0 & 1 & 4 \\
 -1 & 0 & 7 \\
 -4 & -7 & 0
 \end{array}\right]\) a symmetric or skew symmetric?
 Answer:
 Let A = \(\left[\begin{array}{ccc}
 0 & 1 & 4 \\
 -1 & 0 & 7 \\
 -4 & -7 & 0
 \end{array}\right]\) then A is symmetric if A’ = A and skew symmetric if A’ = – A
 i.e., A’ = \(\left[\begin{array}{ccc}
 0 & -1 & -4 \\
 1 & 0 & -7 \\
 4 & 7 & 0
 \end{array}\right]=\left[\begin{array}{ccc}
 0 & 1 & 4 \\
 -1 & 0 & 7 \\
 -4 & -7 & 0
 \end{array}\right]\) = -A
 ∴ The matrix A is a skew symmetric matrix.

II.
 Question 1.
 If A = \(\left[\begin{array}{cc}
 \cos \alpha & \sin \alpha \\
 -\sin \alpha & \cos \alpha
 \end{array}\right]\), show that A . A’ = A’ . A = I2. (March 2007)
 Answer:
 
Question 2.
 If A = \(\left[\begin{array}{ccc}
 1 & 5 & 3 \\
 2 & 4 & 0 \\
 3 & -1 & -5
 \end{array}\right]\) and B = \(\left[\begin{array}{ccc}
 2 & -1 & 0 \\
 0 & -2 & 5 \\
 1 & 2 & 0
 \end{array}\right]\), then find 3A – 4B’.
 Answer:
 
Question 3.
 If A = \(\left[\begin{array}{rr}
 7 & -2 \\
 -1 & 2 \\
 5 & 3
 \end{array}\right]\) and B = \(\left[\begin{array}{rr}
 -2 & -1 \\
 4 & 2 \\
 -1 & 0
 \end{array}\right]\) then find AB’ and BA’.
 Answer:
 
Question 4.
 For any square matrix A; show that A A’ is symmetric. (March 2015-A.P)
 Answer:
 By definition a matrix is said to be symmetric if A’ = A.
 ∴(A A’)’ = (A’)’ A’ = A A’
 [(∵ (AB)’ = B’A’ and (A’)’ = A]
 Hence AA’ is a symmetric matrix.
