Students can practice TS 10th Class Maths Solutions Chapter 1 Real Numbers Ex 1.5 to get the best methods of solving problems.
TS 10th Class Maths Solutions Chapter 1 Real Numbers Exercise 1.5
Question 1.
 Determine the value of the following.
(i) log255
 Solution:
 Let log255 = x ∵ logaN = x ⇒ ax = N
 25x = 5; 52x = 51 ⇒ ax = N
 ⇒ 2x = 1 ⇒ x = \(\frac{1}{2}\)
 log255 = \(\frac{1}{2}\)
(ii) log813
 Solution:
 log813 = x ∵ log<sub.aN = x
 81x = 3 ⇒ (34)x = 31 ⇒ ax = N
 ⇒ 4x = 1 ⇒ x = \(\frac{1}{4}\)
 log813 = \(\frac{1}{4}\)
![]()
(iii) log2 \(\left(\frac{1}{16}\right)\)
 Solution:
 log2\(\frac{1}{16}\) = x ∵ logaN = x ⇒ ax = N
 ⇒ Then 2x = \(\frac{1}{16}\) ⇒ 2x = \(\frac{1}{2^4}\) = 2-4
 ⇒ x = – 4
 los2(\(\frac{1}{16}\)) = -4
(iv) log71
 Solution:
 log71 = x ∵ logaN = x ⇒ ax = N
 ⇒ Then 7x = 1 ⇒ 7x – 70 ⇒ x = 0
 ⇒ log1a = 0
(v) logx \(\sqrt{x}\)
 Solution:
 logx \(\sqrt{x}\) ∵ logaN = x ⇒ ax = N
 ⇒ Then xy = \(\sqrt{x}\) ⇒ xy = x1/2
 ⇒ y = \(\frac{1}{2}\)
 logx \(\sqrt{x}\) = \(\frac{1}{2}\)
(vi) log2512
 Solution:
 log2 512 ∵ logaN = x ⇒ ax = N
 ⇒ Then 2x = 512 ⇒ 2x = 29
 ⇒ x = 9
 log2512 = 9
(vii) log100.01
 Solution:
 log100.01 = x ∵ logaN = x ⇒ ax = N
 Then 10x = 0.01
 ⇒ 10x = 10-2
 ⇒ x = -2
 log100.01 = -2
(viii) \(\log _{\frac{2}{3}}\left(\frac{8}{27}\right)\)
 Solution:
 \(\log _{\frac{2}{3}}\left(\frac{8}{27}\right)\) ∵ logaN = x ⇒ ax = N
 \(\left(\frac{2}{3}\right)^x\) = \(\frac{8}{27}\)
 \(\left(\frac{2}{3}\right)^2\) = \(\left(\frac{2}{3}\right)^3\) ⇒ x = 3
 \(\log _{\frac{2}{3}}\left(\frac{8}{27}\right)\) = 3
(ix) \(2^{2+\log _2^3}\)
 Solution:
 \(2^{2+\log _2^3}\) ∵ \(a^{\log _a^m}\) = m
 = 22 × \(2^{\log _2^3}\)
 = 4 × 3 = 12
Question 2.
 Write the following expressions as log N and find their values.
(i) log 2 + log 5
 Solution:
 log 2 + log 5
 ∵ log x + log y = log xy
 log 2 + log 5 = log (2 × 5)
 = log (2 × 5)
 = log 10
(ii) log 16 – log 2
 Solution:
 log 16 – log 2
 ∵ log x – log y = log \(\left(\frac{x}{y}\right)\)
 log 16 – log 2 = log \(\left(\frac{16}{2}\right)\) = log 8
![]()
(iii) 3 log 4
 Solution:
 3 log 4
 ∵ m logax = logaxm
 3 log 4 = log 43 = log 64
(iv) 2 log 3 – 3 log 2
 Solution:
 2 log 3 – 3 log 2 ∵ m log a = log am
 log x – log y = log\(\frac{x}{y}\)
log 32 – log 23
 log \(\frac{3^2}{2^3}\) = log \(\frac{9}{8}\)
(v) log 243 + log 1
 Solution:
 log 243 + log 1 ∵ log x + log y = log xy
 = log 243 × 1
 = log 243
(vi) log 10 + 2 log 3 – log 2
 Solution:
 log 10 + 2 log 3 – log 2
 = log 10 + log 32 – log 2
 = log 10 + log 9 – log 2
 = log 90 – log 2
 = log \(\frac{90}{2}\) = log 45
Question 3.
 Evaluate each of the following in terms of x and y, if it is given that x = log23 and y = log25
 (i) log2 15
 (ii) log2 7.5
 (iii) log260
 (iv) log26750
 Solution:
 
Question 4.
 Expand the following.
(i) log 1000
 Solution:
 
 = 3 log 2 + 3 log 5
 = 3 [log 2 + log 5]
(ii) log2\(\left(\frac{128}{625}\right)\)
 Solution:
 log \(\left(\frac{128}{625}\right)\)
 
(iii) log x2y3z4
 Solution:
 log x2y3z4
 = log x2 + log y3 + log z4
 = 2 log x + 3 log y + 4 log z
(iv) log \(\frac{p^2 q^3}{r}\)
 Solution:
 log \(\frac{p^2 q^3}{r}\)
 log (p2q3) – log r
 = log p2 + log q3 – log r
 = 2 log p + 3 log q – log r
(v) \(\log \sqrt{\frac{x^3}{y^2}}\)
 Solution:
 log \(\sqrt{\frac{x^3}{y^2}}\) ∵ log xm = m log x
 = log \(\left(\frac{x^3}{y^2}\right)^{1 / 2}\) = \(\frac{1}{2} \log \left(\frac{x^3}{y^2}\right)\)
 = \(\frac{1}{2}\)[log x3 – log y2]
 = \(\frac{1}{2}\)[3 log x – 2 log y]
Question 5.
 If x2 + y2 = 25xy, then prove that 2 log(x + y) = 3log3 + logx + logy.
 Solution:
 Given x2 + y2 = 25xy
 Adding ‘2xy’ on both sides.
 x2 + y2 + 2xy = 25xy + 2xy
 (x + y)2 = 27xy
 Applying ‘log’ on both sides
 log(x + y)2 = log 27xy
 2log(x + y) = log(33 × x × y)
 = log33 + log x + log y
 ∴ 2log(x + y) = 31og3 + logx + logy
![]()
Question 6.
 If log\(\left(\frac{x+y}{3}\right)\) = \(\frac{1}{2}\)log(x + y) = 3log3 + logx + logy.
 Solution:
 
 Squaring on both sides
 
Question 7.
 If (2.3)x = (0.23)y = 1000, then find the value of \(\frac{1}{x}\) – \(\frac{1}{y}\).
 Solution:
 Given : (2.3)x = (0.23)y = 1000
 (2.3)x = 1000 = 103
 ∴ 2.3 = \(10^{\frac{3}{x}}\)
 Also (0.23)y = 103
 ∴ 0.23 = \(10^{\frac{3}{y}}\)
 Now 0.23 = \(\frac{2.3}{10}\)
 
Question 8.
 If 2x+1 = 31-x then find the value of x.
 Solution:
 Given : 2x + 1 = 31 – x
 Taking log on b.t.s
 log 2x + 1 = log 31 – x
 (x + 1) log 2 = (1 – x) log 3
 x log 2 + log 2 = log 3 – x log 3
 x log 2 + x log 3 = log 3 – log 2
 x (log 3 + log 2) = log 3 – log 2
 ∴ x = \(\frac{\log 3-\log 2}{\log 3+\log 2}\) = \(\frac{\log \frac{3}{2}}{\log 6}\)
Question 9.
 Is (i) log 2 rational or irrational? Justify your answer.
 (ii) log 100 rational or irrational? Justify your answer.
 Solution:
 i) log2 is rational. Since the value of log102
 = 0.3010
(ii) log 100 rational or irrational? Justify your answer.
 Solution:
 log 100 is rational
 ∴ log10100 = log10102
 = 2 log1010 = 2