TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Students must practice these TS Inter 2nd Year Maths 2A Important Questions Chapter 2 De Moivre’s Theorem to help strengthen their preparations for exams.

TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 1.
Simplify \(\frac{(\cos \alpha+i \sin \alpha)^4}{(\sin \beta+i \cos \beta)^8}\)
Solution:
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 1

TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 2.
If m,n are integers and x = cos α + i sin α, y = cos β + i sin β then prove that
xm yn + \(\frac{1}{x^m y^n}\) = cos (mα +nβ) and
xm yn – \(\frac{1}{x^m y^n}\) = 2i sin (mα +nβ)
Solution:
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 2
Question 3.
If n is a positive Integer, show that \((1+i)^n+(1-i)^n=2^{\frac{n+2}{2}} \cos \left(\frac{n \pi}{4}\right)\)
Solution:
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 3
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 4

TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 4.
If n is an Integer then show that
(1 + cos θ + i sin θ)n + (1 + cos θ – i sin θ)n \(=2^{n+1} \cos ^n\left(\frac{\theta}{2}\right) \cos \left(\frac{n \theta}{2}\right)\)
Solution:
L.H.S
(1 + cos θ + i sin θ)n + (1 + cos θ – i sin θ)n
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 5

Question 5.
If cos α+cos β + cos γ = 0 = sin α + sin β + sin γ, Prove that cos2 α +cos2 β +cos γ = \(\frac{3}{2}\) sin2 α + sin2 β + sin2 γ.
Solution:
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 6
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 7

TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 6.
Find all the values of \((\sqrt{3}+i)^{1 / 4}\)
Solution:
The modulus amplitude form of
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 8
Question 7.
Find all the roots of the equation
x11 – x7 + x4 -1 = 0
Solution:
x11 – x7 + x4 -1  = x7(x4-1) +1 (x4– 1) = (x4-1)(x7. 1)
Therefore the roots of the given equations are precisely the roots of unity and 7th roots of – 1.
They are cis = \(\frac{2 \mathrm{k} \pi}{4} \) = cis \(\frac{\mathrm{k} \pi}{4}\) k∈{0,1,2,3} and
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 9

TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 8.
If 1, ω, ω2 are the cube roots of unity, prove that
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 13
Solution:
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 10
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 11

TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 9.
If α, β are the roots of the equation x2 + x + 1 = 0 then prove that α4 + β4 + α-1 = β-1
Solution:
Since α, β are the complex cube roots of unity,
we may take α = ω, β = ω2
TS Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 12

Leave a Comment