Students must practice these TS Inter 1st Year Maths 1A Important Questions Chapter 8 Inverse Trigonometric Functions to help strengthen their preparations for exams.
TS Inter 1st Year Maths 1A Inverse Trigonometric Functions Important Questions
Question 1.
Prove that
Solution:
Question 2.
Find the values of the following.
(i) \(\sin ^{-1}\left(-\frac{1}{2}\right)\)
Solution:
\(\sin ^{-1}\left(-\frac{1}{2}\right)=-\sin ^{-1}\left(\frac{1}{2}\right)=-\frac{\pi}{6}\)
(ii) \(\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\)
Solution:
(iii) \(\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)\)
Solution:
\(\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\tan ^{-1}\left(\tan \frac{\pi}{6}\right)=\frac{\pi}{6}\)
(iv) cot-1 (-1)
Solution:
(v) sec -1 \((-\sqrt{2})\)
Solution:
(vi) Cosec -1 \(\left(\frac{2}{\sqrt{3}}\right)\)
Solution:
Question 3.
Find the values of the following.
(i) sin-1 \(\left(\sin \frac{4 \pi}{3}\right)\)
Solution:
(ii) \(\tan ^{-1}\left(\tan \frac{4 \pi}{3}\right)\)
Solution:
Question 4.
Find the values of the following.
(i) \(\sin \left(\cos ^{-1} \frac{5}{13}\right)\)
Solution:
(ii) \(\tan \left(\sec ^{-1} \frac{25}{7}\right)\)
Solution:
(iii) \(\cos \left(\tan ^{-1} \frac{24}{7}\right)\)
Solution:
Question 5.
Find the values of the following.
(i) \(\sin ^2\left(\tan ^{-1} \frac{3}{4}\right)\)
Solution:
(ii) \(\sin \left(\frac{\pi}{2}-\sin ^{-1}\left(-\frac{4}{5}\right)\right)\)
Solution:
(iii) \(\cos \left(\cos ^{-1}\left(-\frac{2}{3}\right)-\sin ^{-1}\left(\frac{2}{3}\right)\right)\)
Solution:
(iv) sec2 (cot-1 3) + cosec2 (tan-1 2)
Solution:
Question 6.
Find the value of \(\cot ^{-1}\left(\frac{1}{2}\right)+\cot ^{-1}\left(\frac{1}{3}\right)\)
Solution:
Question 7.
Prove that
\(\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{7}{25}\right)=\sin ^{-1}\left(\frac{117}{125}\right)\)
Solution:
Question 8.
If x ∈(-1, 1) prove that 2 tan-1 x = \(\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)\)
Solution:
Given x ∈ (-1,1) and it tan-1 x = a then tan α = x and
Question 9.
Prove that \(\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right) +\sin ^{-1}\left(\frac{16}{65}\right)=\frac{\pi}{2}\)
Solution:
Question 10.
Prove that cot-1 9+ cosec-1 \( \frac{\sqrt{41}}{4}=\frac{\pi}{4}\)
Solution:
Question 11.
Show that cot \(\begin{aligned} \cot \left(\operatorname{Sin}^{-1} \sqrt{\frac{13}{17}}\right) \\ = \sin \left(\operatorname{Tan}^{-1}\left(\frac{2}{3}\right)\right) \end{aligned}\)
Solution:
Question 12.
Find the value of \(tan \left[2 \operatorname{Tan}^{-1}\left(\frac{1}{5}\right)-\frac{\pi}{4}\right]\)
Solution:
Question 13.
Prove that \(\operatorname{Sin}^{-1}\left(\frac{4}{5}\right)+2 \operatorname{Tan}^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{2}\)
Solution:
Question 14.
If sin-1 x + sin-1 y + sin-1 z = π, then prove that x4 + y4 + z4 + 4x2y2z2 = 2 (x2y2 + y2z2 + z2x2)
Solution:
Let sin-1 x = A, sin-1 y = B and sin-1z = C
then A+B+C = π …………………..(1)
and sinA = x, sin B = y, sin C = z
Now A+B = π – c
Question 15.
If \(\operatorname{Cos}^{-1}\left(\frac{p}{a}\right)+\operatorname{Cos}^{-1}\left(\frac{q}{b}\right)\) =α the prove that
Solution:
Question 16.
Solve \(\sin ^{-1}\left(\frac{5}{x}\right)+\sin ^{-1}\left(\frac{12}{x}\right)=\frac{\pi}{2},(x>0)\)
Solution:
Question 17.
Solve
Solution:
Question 18.
Solve \(\operatorname{Sin}^{-1} x+\operatorname{Sin}^{-1} 2 x=\frac{\pi}{3}\)
Solution:
when \(x=-\frac{\sqrt{3}}{2 \sqrt{7}}\) value is not admissible
Since sin-1 x and sin-1 2x are negative
Hence \(x=-\frac{\sqrt{3}}{2 \sqrt{7}}\)
Question 19.
If sin [2 Cos-1 (cot (2 Tan-1x)}] = 0 find x.
Solution:
Question 20.
Prove that
Solution:
Let cot-1 x=θ then cot θ = x and θ <x<π
∴ sin (cot-1x) = sinθ = \(\frac{1}{\operatorname{cosec} \theta}\)
Question 21.
Show that sec2 (tan-1) + cosec2 (cot-1 2) = 10.
Solution:
[1 + tan2 (tan-1(2)] + [1+ cot2 (cot-1(2))]
= 1 + 4 + 1 + 4 = 10