{"id":12303,"date":"2024-03-11T16:26:20","date_gmt":"2024-03-11T10:56:20","guid":{"rendered":"https:\/\/tsboardsolutions.in\/?p=12303"},"modified":"2024-03-13T17:31:23","modified_gmt":"2024-03-13T12:01:23","slug":"ts-10th-class-maths-bits-chapter-10","status":"publish","type":"post","link":"https:\/\/tsboardsolutions.in\/ts-10th-class-maths-bits-chapter-10\/","title":{"rendered":"TS 10th Class Maths Bits Chapter 10 Mensuration"},"content":{"rendered":"

Solving these\u00a0TS 10th Class Maths Bits with Answers<\/a> Chapter 10 Mensuration Bits for 10th Class will help students to build their problem-solving skills.<\/span><\/p>\n

Mensuration Bits for 10th Class<\/h2>\n

Question 1.
\nTo find out quantity of water in the bottle, we measure
\nA) surface area
\nB) total surface area
\nC) volume
\nD) base area
\nAnswer:
\nC) volume<\/p>\n

Question 2.
\nLateral surface area of a cube is given by
\nA) 2a2<\/sup>
\nB) 4a2<\/sup>
\nC) 6a2<\/sup>
\nD) a3<\/sup>
\nAnswer:
\nB) 4a2<\/sup><\/p>\n

Question 3.
\nTotal surface area of a regular circular cylinder is
\nA) 2\u03c0rh
\nB) \u03c0rl
\nC) 2\u03c0r(\u03c0 + r)
\nD) 2\u03c0r(r + h)
\nAnswer:
\nD) 2\u03c0r(r + h)<\/p>\n

\"TS<\/p>\n

Question 4.
\nThe ratio of volumes of a cone and a cylinder whose radii and height are equal is ………………….
\nA) 3 : 1
\nB) 1 : 3
\nC) 1 : 2
\nD) 1 : 1
\nAnswer:
\nB) 1 : 3<\/p>\n

Question 5.
\nThe diagonal of a cube whose side is ‘a’ units is ……………..
\nA) a
\nB) \\(\\sqrt{2}\\) a
\nC) \\(\\sqrt{3}\\) a
\nD) 2a
\nAnswer:
\nC) \\(\\sqrt{3}\\) a<\/p>\n

Question 6.
\nThe volume of a sphere of radius ‘r’ is obtained by multiplying its surface area by
\nA) 4\/3
\nB) r\/3
\nC) 4r\/3
\nD) 3r
\nAnswer:
\nB) r\/3<\/p>\n

Question 7.
\nThe total surface area of a solid hemisphere of radius 7cm is
\nA) 239 \u03c0 cm2<\/sup>
\nB) 449 \u03c0 cm2<\/sup>
\nC) 221 \u03c0 cm2<\/sup>
\nD) 129 \u03c0 cm2<\/sup>
\nAnswer:
\nA) 239 \u03c0 cm2<\/sup><\/p>\n

\"TS<\/p>\n

Question 8.
\nThe curved surface area of a right circular cone of height 15cm and base diameter 16cm is.
\nA) 144 \u03c0 cm2<\/sup>
\nB) 136 \u03c0 cm2<\/sup>
\nC) 105 \u03c0 cm2<\/sup>
\nD) 120 \u03c0 cm2<\/sup>
\nAnswer:
\nB) 136 \u03c0 cm2<\/sup><\/p>\n

Question 9.
\nThe surface areas of two spheres are in the ratio 1 : 4 then, ratio of their volumes is
\nA) 1 : 4
\nB) 2 : 8
\nC) 1 : 16
\nD) 1 : 64
\nAnswer:
\nA) 1 : 4<\/p>\n

Question 10.
\nThe volume of the largest right circular cone that can be cut out from a cube of edge 4.2 cm is
\nA) 19.4 cm3<\/sup>
\nB) 74.6 cm3<\/sup>
\nC) 9.7 cm3<\/sup>
\nD) 8.4 cm3<\/sup>
\nAnswer:
\nA) 19.4 cm3<\/sup><\/p>\n

Question 11.
\nThe ratio of volume of cone and cylinder of equal diameter and height
\nA) 3 : 1
\nB) 1 : 2
\nC) 2 : 1
\nD) 1 : 3
\nAnswer:
\nD) 1 : 3<\/p>\n

\"TS<\/p>\n

Question 12.
\nAn iron cylindrical rod has a height 4 times of its radius is melted and cast into spherical balls of the same radius. The number of balls cast is
\nA) 4
\nB) 3
\nC) 2
\nD) 1
\nAnswer:
\nD) 1<\/p>\n

Question 13.
\nA cone and a hemi-sphere have equal bases and equal volumes then the ratio of their heights
\nA) 2 : 1
\nB) 3 : 1
\nC) 4 : 1
\nD) 1 : 1
\nAnswer:
\nA) 2 : 1<\/p>\n

Question 14.
\nThe volume of the greatest cylinder that can be cut form a solid wooden cube of length of edge 14cm is
\nA) 2156 cm3<\/sup>
\nB) 1078 cm3<\/sup>
\nC) 539 cm3<\/sup>
\nD) 428 cm3<\/sup>
\nAnswer:
\nA) 2156 cm3<\/sup><\/p>\n

Question 15.
\nA shuttle cock is a combination of
\nA) cylinder, sphere
\nB) sphere, cone
\nC) cylinder, hemisphere
\nD) hemisphere, first term cone
\nAnswer:
\nD) hemisphere, first term cone<\/p>\n

\"TS<\/p>\n

Question 16.
\nT.S.A of a solid hemisphere whose radius is 7cm is …………….. cm2<\/sup>.
\nA) 327 \u03c0
\nB) 144 \u03c0
\nC) 147 \u03c0
\nD) 189 \u03c0
\nAnswer:
\nC) 147 \u03c0<\/p>\n

Question 17.
\nIf the radius of base of a cylinder is doubled and the height remains unchanged, it’s C.S.A becomes
\nA) double
\nB) times
\nC) half
\nD) no change
\nAnswer:
\nA) double<\/p>\n

Question 18.
\nThe number of cubes of side 2cm which can be cut from a cube of side 6 cm is
\nA) 3
\nB) 18
\nC) 27
\nD) 9
\nAnswer:
\nC) 27<\/p>\n

Question 19.
\nIf the diameter of a sphere is’d’ then its volume is
\nA) \\(\\frac{1}{6}\\) \u03c0d3<\/sup>
\nB) \\(\\frac{4}{3}\\) \u03c0d3<\/sup>
\nC) \\(\\frac{1}{24}\\) \u03c0d3<\/sup>
\nD) \\(\\frac{1}{3}\\) \u03c0d3<\/sup>
\nAnswer:
\nA) \\(\\frac{1}{6}\\) \u03c0d3<\/sup><\/p>\n

Question 20.
\nA cylindrical, a cone and a hemisphere are of equal base and have the same height, then the ratio of their volumes is
\nA) 3 : 1 : 1
\nB) 3 : 2 : 1
\nC) 1 : 2 : 3
\nD) 1 : 3 : 2
\nAnswer:
\nA) 3 : 1 : 1<\/p>\n

\"TS<\/p>\n

Question 21.
\nTotal surface area of a cube is 216 cm2<\/sup> then its volume is ……………….. cm3<\/sup>.
\nA) 216
\nB) 196
\nC) 212
\nD) 144
\nAnswer:
\nA) 216<\/p>\n

Question 22.
\nThe total surface area of a cube is 54 cm2<\/sup> then its side is ………………. cm. (A.P. Mar. ’15 )
\nA) 6
\nB) 9
\nC) 12
\nD) 3
\nAnswer:
\nD) 3<\/p>\n

Question 23.
\nBase area of a regular cylinder is 154 cm2<\/sup> then its radius is ……………….. (A.P. Mar. ’16, ’15)
\nA) 49 cm
\nB) 7 cm
\nC) 22 cm
\nD) 14 cm
\nAnswer:
\nB) 7 cm<\/p>\n

Question 24.
\nIf the height and radius of a cone are 1.5 and 8 cm then its slant height = ………………. cm
\nA) 2.5 cm
\nB) 7.5 cm
\nC) 5 cm
\nD) 10 cm
\nAnswer:
\nC) 5 cm<\/p>\n

Question 25.
\nCurved surface area of a hemi-sphere = ………………. (A.P. Mar. ’15)
\nA) \u03c0r2<\/sup>
\nB) \\(\\frac{1}{3}\\)\u03c0r2<\/sup>
\nC) 3\u03c0r2<\/sup>
\nD) 2\u03c0r2<\/sup>
\nAnswer:
\nD) 2\u03c0r2<\/sup><\/p>\n

\"TS<\/p>\n

Question 26.
\nVolume of a cube having 1 cm side is ……………….. (A.P. Mar. ’16, June ’15)
\nA) 1 cm3<\/sup>
\nB) 3 cm3<\/sup>
\nC) 1 cm2<\/sup>
\nD) 3 cm2<\/sup>
\nAnswer:
\nA) 1 cm3<\/sup><\/p>\n

Question 27.
\nRatio of volumes of two spheres is 8 : 27 then ratio of their curved surface areas is …………….. (A.P. June ’15)
\nA) 2 : 3
\nB) 4 : 27
\nC) 8 : 9
\nD) 4 : 9
\nAnswer:
\nC) 8 : 9<\/p>\n

Question 28.
\nFootball is in a model of …………………. (A.P. Mar. ’16)
\nA) circle
\nB) cylinder
\nC) Sphere
\nD) cone
\nAnswer:
\nC) Sphere<\/p>\n

Question 29.
\nRadius of a cone is ‘r’, height is ‘h’ and its slant height is 7 then which of the following is false ? (A.P. Mar. ’16)
\nA) always l > h
\nB) always l > r
\nC) always r > p
\nD) l2<\/sup> = r2<\/sup> + h2<\/sup>
\nAnswer:
\nC) always r > p<\/p>\n

Question 30.
\nRadius, height, slant height of a cone are| r, h, l, then ‘l’ value in terms of r and h is ……………… (T.S. Mar. ’15)
\nA) \\(\\sqrt{h^2-r^2}\\)
\nB) \\(\\sqrt{r^2+h^2}\\)
\nC) \\(\\sqrt{r^2-h^2}\\)
\nD) \\(\\sqrt{4 r^2+h^2}\\)
\nAnswer:
\nB) \\(\\sqrt{r^2+h^2}\\)<\/p>\n

\"TS<\/p>\n

Question 31.
\nTo calculate the quantity of milk inside a bottle, we need to find out
\nA) Area
\nB) Volume
\nC) Density
\nD) TSA
\nAnswer:
\nB) Volume<\/p>\n

Question 32.
\nSphere, cylinder and cone have same heights and radii, then its ratios of curved surface areas.
\nA) 4 : 4 : \\(\\sqrt{5}\\)
\nB) 1 : 1 : \\(\\sqrt{5}\\)
\nC) \\(\\sqrt{5}\\) : 4 : 4
\nD) 4 : \\(\\sqrt{5}\\) : 4
\nAnswer:
\nA) 4 : 4 : \\(\\sqrt{5}\\)<\/p>\n

Question 33.
\nDiagonal of a cuboid is …………….. units.
\nA) \\(\\sqrt{l^2+b^2+h^2}\\)
\nB) \\(1 \\sqrt{\\mathrm{b}^2+\\mathrm{h}^2}\\)
\nC) \\(b \\sqrt{h^2+r^2}\\)
\nD) none
\nAnswer:
\nA) \\(\\sqrt{l^2+b^2+h^2}\\)<\/p>\n

Question 34.
\nThe radius of a conical tent is 3 meter and height is 4 meter then its slant height is …………………. meter.
\nA) 5
\nB) 725
\nC) A and B
\nD) none
\nAnswer:
\nA) 5<\/p>\n

\"TS<\/p>\n

Question 35.
\nThe total surface area of a solid hemisphere of radius 1 unit is
\nA) 3\u03c0r2<\/sup>
\nB) 2\u03c0r2<\/sup>
\nC) 3\u03c0
\nD) 2\u03c0
\nAnswer:
\nC) 3\u03c0<\/p>\n

Question 36.
\nVolume of \"TS is cuboid.
\nA) 16
\nB) 10
\nC) 6
\nD) 12
\nAnswer:
\nC) 6<\/p>\n

Question 37.
\nThe diameter of a metallic sphere is 6 cm and melted to draw a wire of diameter 2cm, then the length of the wire is
\nA) 48 cm
\nB) 12 cm
\nC) 36 cm
\nD) 24 cm
\nAnswer:
\nC) 36 cm<\/p>\n

Question 38.
\nA solid sphere of radius r melted and recast into the shape of a solid cone of height r, then radius of the base of the cone is (of equal volume)
\nA) 2r
\nB) r
\nC) 3r
\nD) 4r
\nAnswer:
\nA) 2r<\/p>\n

\"TS<\/p>\n

Question 39.
\nIf the radii of circular ends of a frustum of a cone are 20 cm and 12 cm and its height is 6cm, then the slant height of the frustum is …………………. cm.
\nA) 10
\nB) 6
\nC) 9
\nD) 8
\nAnswer:
\nA) 10<\/p>\n

Question 40.
\nThe number of balls, each of radius 1 cm that can be made from a solid sphere of radius 8 cm is
\nA) 64
\nB) 216
\nC) 16
\nD) 512
\nAnswer:
\nD) 512<\/p>\n

Question 41.
\nThe ratio of volume of two cones is 4 : 5 and the ratio of the radii of their base is 2 : 3 then ratio of their vertical heights is
\nA) 4 : 5
\nB) 9 : 5
\nC) 3 : 5
\nD) 2 : 5
\nAnswer:
\nB) 9 : 5<\/p>\n

Question 42.
\nIf the ratio of radii of two spheres is 2 : 3 then the ratio of their surface areas is
\nA) 3 : 2
\nB) 27 : 8
\nC) 8 : 27
\nD) 4 : 9
\nAnswer:
\nD) 4 : 9<\/p>\n

Question 43.
\nIf a cone is cut into two parts by a horizontal plane passing through the mid point of the axis, the ratio of the volumes of the
\nupper part and the cone is
\nA) 1 : 2
\nB) 1 : 4
\nC) 1 : 6
\nD) 1 : 8
\nAnswer:
\nD) 1 : 8<\/p>\n

\"TS<\/p>\n

Question 44.
\nThe height of a cylinder is doubled and radius is tripled then its curved surface area will become …………….. times.
\nA) 7
\nB) 6
\nC) 9
\nD) 12
\nAnswer:
\nB) 6<\/p>\n

Question 45.
\nDiameter of a sphere which can in-scribe a cube of edge x cm is ……………
\nA) \\(\\frac{x}{3}\\)
\nB) \\(\\frac{x^2}{3}\\)
\nC) \\(\\frac{x}{\\sqrt{3}}\\)
\nD) x\\(\\sqrt{3}\\)
\nAnswer:
\nD) x\\(\\sqrt{3}\\)<\/p>\n

Question 46.
\nTotal surface area of hemisphere of radius r is ………….
\nA) \u03c0r2<\/sup>
\nB) 2\u03c0r2<\/sup>
\nC) 3\u03c0r2<\/sup>
\nD) none
\nAnswer:
\nC) 3\u03c0r2<\/sup><\/p>\n

Question 47.
\nVolume of frustrum of a cone is
\nA) \\(\\frac{\\pi h}{3}\\) (R2<\/sup> + r2<\/sup>2 +R.r)
\nB) \\(\\frac{\\mathrm{h}}{3}\\)(R2<\/sup> + r2<\/sup>)
\nC) \\(\\frac{\\pi h}{3}\\)(R2<\/sup> +r2<\/sup>)
\nD) none
\nAnswer:
\nA) \\(\\frac{\\pi h}{3}\\) (R2<\/sup> + r2<\/sup>2 +R.r)<\/p>\n

Question 48.
\nIf the length of each diagonal of a cube is doubled, then its volume become ………………. times.
\nA) 7
\nB) 8
\nC) 9
\nD) none
\nAnswer:
\nB) 8<\/p>\n

\"TS<\/p>\n

Question 49.
\nIf a right angled triangle is revolved about its hypotenuse then it will form a ………………….
\nA) double cone
\nB) triple cone
\nC) only cone
\nD) none
\nAnswer:
\nA) double cone<\/p>\n

Question 50.
\nA solid sphere of radius 10 cm is moulded into 8 spherical solid balls of equal radius, then radius of small spherical balls is ……………… cm.
\nA) 10
\nB) 9
\nC) 6
\nD) 5
\nAnswer:
\nD) 5<\/p>\n

Question 51.
\nIn a hollow cuboid box of size 4 \u00d7 3 \u00d7 2m, the number of solid iron spherical balls of radius 0.5 m that can be packed ……………
\nA) 71
\nB) 24
\nC) 22
\nD) 16
\nAnswer:
\nB) 24<\/p>\n

Question 52.
\nIf the external and internal radii of a hollow hemispherical bowl are R and r, then its total surface area is ……………….
\nA) \u03c0r2<\/sup> + R2<\/sup>
\nB) \u03c0R2<\/sup> + r2<\/sup>
\nC) \u03c0R2<\/sup> + r
\nD) \u03c0(3R2<\/sup> + r2<\/sup>)
\nAnswer:
\nD) \u03c0(3R2<\/sup> + r2<\/sup>)<\/p>\n

\"TS<\/p>\n

Question 53.
\nVolume of cylinder is …………………. cu. units.
\nA) \u03c0r2<\/sup>h
\nB) \u03c0r2<\/sup>
\nC) \\(\\frac{\\pi}{r}\\)
\nD) none
\nAnswer:
\nA) \u03c0r2<\/sup>h<\/p>\n

Question 54.
\nVolume of cone is ……………… cu. units.
\nA) \\(\\frac{1}{7}\\) \u03c0r2<\/sup>h
\nB) \\(\\frac{1}{2}\\) \u03c0r2<\/sup>h
\nC) \u03c0r2<\/sup>h
\nD) \\(\\frac{1}{3}\\) \u03c0r2<\/sup>h
\nAnswer:
\nD) \\(\\frac{1}{3}\\) \u03c0r2<\/sup>h<\/p>\n

Question 55.
\nVolume of sphere is ………………… cu.units.
\nA) \\(\\frac{4}{3}\\) \u03c0r2<\/sup>h
\nB) \\(\\frac{4}{3}\\) \u03c0r3<\/sup>
\nC) \\(\\frac{1}{3}\\) \u03c0r3<\/sup>
\nD) none
\nAnswer:
\nB) \\(\\frac{4}{3}\\) \u03c0r3<\/sup><\/p>\n

Question 56.
\nVolume of cuboid = …………………… cu.units
\nA) l2<\/sup>b
\nB) lbh2<\/sup>
\nC) lbh
\nD) none
\nAnswer:
\nC) lbh<\/p>\n

Question 57.
\nTotal surface area of cone is …………………. sq.units.
\nA) \u03c0r2<\/sup> + \u03c0rl
\nB) \u03c0r2<\/sup> + \u03c0r
\nC) \u03c0r2<\/sup> + \u03c0l
\nD) none
\nAnswer:
\nA) \u03c0r2<\/sup> + \u03c0rl<\/p>\n

\"TS<\/p>\n

Question 58.
\nTotal surface area of cylinder is ……………………. sq.units.
\nA) \u03c0rh + \u03c0r2<\/sup>
\nB) 2\u03c0r + \u03c0
\nC) 2\u03c0rh2<\/sup>
\nD) 2\u03c0rh + 2\u03c0r2<\/sup>
\nAnswer:
\nD) 2\u03c0rh + 2\u03c0r2<\/sup><\/p>\n

Question 59.
\nTotal surface area of hemisphere is ………………… sq.units.
\nA) \\(\\frac{\\pi r^2}{\\mathrm{~h}}\\)
\nB) 4\u03c0r2<\/sup>
\nC) 8\u03c0r2<\/sup>h
\nD) none
\nAnswer:
\nD) none<\/p>\n

Question 60.
\nSurface area of sphere is ……………… sq.units.
\nA) \\(\\frac{\\pi r^2}{\\mathrm{~h}}\\)
\nB) 4\u03c0r2<\/sup>
\nC) 8\u03c0r2<\/sup>h
\nD) none
\nAnswer:
\nB) 4\u03c0r2<\/sup><\/p>\n

Question 61.
\nVolume of a cube is ………………… cu.units.
\nA) 3a3<\/sup>
\nB) a2<\/sup>h
\nC) a3<\/sup>
\nD) none
\nAnswer:
\nC) a3<\/sup><\/p>\n

Question 62.
\nThe volume of a cube is 216 cm3 then edge is ………………….. cm.
\nA) 9
\nB) 10
\nC) 16
\nD) 6
\nAnswer:
\nD) 6<\/p>\n

\"TS<\/p>\n

Question 63.
\nC.S.A of cone = ……………….. sq. units.
\nA) \u03c02<\/sup>r2<\/sup>l
\nB) \u03c0rl2<\/sup>
\nC) \u03c0r2<\/sup>
\nD) \u03c0rl
\nAnswer:
\nD) \u03c0rl<\/p>\n

Question 64.
\nIn a cone, r = 7 cm, h = 10 cm then l = ………………….. cm
\nA) 12.2
\nB) 9.2
\nC) 10.1
\nD) none
\nAnswer:
\nA) 12.2<\/p>\n

Question 65.
\n\u03c0 = …………………
\nA) \\(\\frac{22}{7}\\)
\nB) \\(\\frac{2}{7}\\)
\nC) \\(\\frac{22}{3}\\)
\nD) none
\nAnswer:
\nA) \\(\\frac{22}{7}\\)<\/p>\n

Question 66.
\nThe volume of a right circular cone with radius 6 cm and height 7 cm is …………………. cm3<\/sup>.
\nA) 462
\nB) 264
\nC) 486
\nD) none
\nAnswer:
\nB) 264<\/p>\n

Question 67.
\nA heap of rice is in the form of a cone of diameter 12 m and height 8 m then volume is ……………… m3<\/sup>.
\nA) 110.53
\nB) 301.71
\nC) 310.51
\nD) none
\nAnswer:
\nB) 301.71<\/p>\n

\"TS<\/p>\n

Question 68.
\nIn a cylinder, r = 8 cm, h = 10 cm, CSA = …………………. cm3<\/sup>.
\nA) \\(\\frac{3520}{7}\\)
\nB) \\(\\frac{1520}{9}\\)
\nC) \\(\\frac{3310}{41}\\)
\nD) none
\nAnswer:
\nA) \\(\\frac{3520}{7}\\)<\/p>\n

Question 69.
\nIn a hemisphere, r = 1.75 cm then CSA = ……………… cm2<\/sup>.
\nA) 38.5
\nB) 48.5
\nC) 93.5
\nD) none
\nAnswer:
\nA) 38.5<\/p>\n

Question 70.
\nVolume of cone if r = 2 cm, h = 4 cm is ……………….
\nA) \\(\\frac{16}{3}\\) \u03c0
\nB) \\(\\frac{6}{7}\\) \u03c0
\nC) \\(\\frac{18}{31}\\) \u03c0
\nD) none
\nAnswer:
\nA) \\(\\frac{16}{3}\\) \u03c0<\/p>\n

Question 71.
\nSurface area of a sphere and cube are equal then the ratio of their volumes is …………………
\nA) \\(\\sqrt{\\pi}\\) : 1
\nB) \\(\\sqrt{\\pi}\\) : \\(\\sqrt{6}\\)
\nC) \u03c0 : \\(\\sqrt{6}\\)
\nD) none
\nAnswer:
\nB) \\(\\sqrt{\\pi}\\) : \\(\\sqrt{6}\\)<\/p>\n

Question 72.
\nIn a hemisphere, r = 7 cm then CSA = ………………… cm2<\/sup>.
\nA) 210
\nB) 308
\nC) 114
\nD) 112
\nAnswer:
\nB) 308<\/p>\n

\"TS<\/p>\n

Question 73.
\nIn a cylinder, r = 7 cm then CSA = ………………. cm2<\/sup>.
\nA) 1170
\nB) 1120
\nC) 2310
\nD) 1320
\nAnswer:
\nC) 2310<\/p>\n

Question 74.
\nHeap of stones is an example of ………………..
\nA) cylinder
\nB) cone
\nC) circle
\nD) none
\nAnswer:
\nB) cone<\/p>\n

Question 75.
\nIn the figure, l2<\/sup> = ………………
\n\"TS
\nA) h2<\/sup> + r2<\/sup>
\nB) \\(\\sqrt{l^2+h^2}\\)
\nC) h2<\/sup> + r
\nD) h + r2<\/sup>
\nAnswer:
\nA) h2<\/sup> + r2<\/sup><\/p>\n

Question 76.
\nArea of equilateral triangle of side ‘a’ units is …………….. sq. units.
\nA) \\(\\frac{1}{\\sqrt{3}}\\) a2<\/sup>
\nB) \\(\\frac{4}{\\sqrt{3}}\\) a2<\/sup>
\nC) \\(\\frac{\\sqrt{3}}{4}\\) a
\nD) \\(\\frac{\\sqrt{3}}{4}\\) a2<\/sup>
\nAnswer:
\nD) \\(\\frac{\\sqrt{3}}{4}\\) a2<\/sup><\/p>\n

\"TS<\/p>\n

Question 77.
\nPerimeter of square is 20 cm then A = ………….. cm2<\/sup>.
\nA) 12
\nB) 16
\nC) 25
\nD) none
\nAnswer:
\nC) 25<\/p>\n

Question 78.
\nDiagonal of rectangle is …………… units.
\nA) \\(\\sqrt{l^2+b^2}\\)
\nB) \\(\\sqrt{l+b}\\)
\nC) l + \\(\\sqrt{b}\\)
\nD) \\(\\sqrt{l}\\) + b
\nAnswer:
\nA) \\(\\sqrt{l^2+b^2}\\)<\/p>\n

Question 79.
\nVolume of hollow cylinder is …………………
\nA) \u03c0R – r
\nB) \u03c0r2<\/sup> – R
\nC) \u03c0R2<\/sup> – r
\nD) \u03c0(R2<\/sup> – r2<\/sup>)
\nAnswer:
\nD) \u03c0(R2<\/sup> – r2<\/sup>)<\/p>\n

Question 80.
\n……………… gave the symbol \u03c0.
\nA) Euler
\nB) Pepe
\nC) Mount
\nD) None
\nAnswer:
\nA) Euler<\/p>\n

Question 81.
\nIn a cone, (l + r) (l – r) = …………..
\nA) h2<\/sup>
\nB) 2h
\nC) h
\nD) none
\nAnswer:
\nA) h2<\/sup><\/p>\n

\"TS<\/p>\n

Question 82.
\nA cuboid has dimensions 10x8x6 cm then its volume is ……………… cm3<\/sup>.
\nA) 190
\nB) 780
\nC) 680
\nD) 480
\nAnswer:
\nD) 480<\/p>\n

Question 83.
\nC.S.A of a cone is 4070 cm2<\/sup> and its diameter is 70 cm then slant height is ………………. cm
\nA) 27
\nB) 17
\nC) 37
\nD) 16
\nAnswer:
\nC) 37<\/p>\n

Question 84.
\nThe sphere is of radius 2.1 cm then its volume is ………………. cm2<\/sup>.
\nA) 38.08
\nB) 381.2
\nC) 83.01
\nD) none
\nAnswer:
\nA) 38.08<\/p>\n

Question 85.
\nIn l2<\/sup> = h2<\/sup> + r2<\/sup>, h = 15, r = 8 then l = ………….
\nA) 20
\nB) 17
\nC) 16
\nD) 19
\nAnswer:
\nB) 17<\/p>\n

Question 86.
\nThe surface area of a sphere is 616 sq.cm. then its radius is ……………… cm.
\nA) 16
\nB) 12
\nC) 9
\nD) 7
\nAnswer:
\nD) 7<\/p>\n

\"TS<\/p>\n

Question 87.
\nIn a cone, d = 14 cm, l = 10 cm then CSA = ………………….. cm2<\/sup>.
\nA) 220
\nB) 140
\nC) 160
\nD) none
\nAnswer:
\nA) 220<\/p>\n

Question 88.
\nIn a cube, a = 4 cm then TSA = ……………… cm2<\/sup>.
\nA) 12
\nB) 70
\nC) 90
\nD) none
\nAnswer:
\nC) 90<\/p>\n

Question 89.
\nNumber of edges of a cuboid is ………………
\nA) 11
\nB) 16
\nC) 10
\nD) 12
\nAnswer:
\nD) 12<\/p>\n

Question 90.
\nIf the diagonals of a rhombus are 10 cm and 24 cm then area is ……………….. cm2<\/sup>
\nA) 110
\nB) 814
\nC) 413
\nD) 314
\nAnswer:
\nA) 110<\/p>\n

\"TS<\/p>\n

Question 91.
\nVolume of cone with d as diameter and h as height is …………………. units3<\/sup>.
\nA) \\(\\frac{\\pi \\mathrm{d}^2}{6}\\)
\nB) \\(\\frac{\\pi \\mathrm{d}^2 \\mathrm{~h}}{12}\\)
\nC) \\(\\frac{\\pi \\mathrm{dh}^2}{12}\\)
\nD) none
\nAnswer:
\nB) \\(\\frac{\\pi \\mathrm{d}^2 \\mathrm{~h}}{12}\\)<\/p>\n

Question 92.
\nThe area of the base of a right circular cone is 78.5 cm2<\/sup>. If its height is 12 cm then its volume is …………….. cm3<\/sup>.
\nA) 110
\nB) 814
\nC) 413
\nD) 314
\nAnswer:
\nD) 314<\/p>\n

Question 93.
\nThe volume of a cuboid is 3,36,000 cm3<\/sup>. If; its area is 5,600 cm2<\/sup> then h = ……………… cm
\nA) 70
\nB) 60
\nC) 95.5
\nD) none
\nAnswer:
\nB) 60<\/p>\n

Question 94.
\nThe volume of cone is 462 cm3<\/sup>, r = 7 cm then h = ……………….. cm.
\nA) 9
\nB) 10
\nC)11
\nD) none
\nAnswer:
\nA) 9<\/p>\n

Question 95.
\nThe area of equilateral triangle is 36\\(\\sqrt{3}\\) cm2<\/sup> then the perimeter is ……………. cm.
\nA) 36
\nB) 63
\nC) 16
\nD)10
\nAnswer:
\nA) 36<\/p>\n

\"TS<\/p>\n

Question 96.
\nSurface area of a cube of side 27 cm is ………………. cm3<\/sup>.
\nA) 1474
\nB) 8174
\nC) 1374
\nD) 4374
\nAnswer:
\nD) 4374<\/p>\n

Question 97.
\nThe perimeter of an equilateral triangle is 60 cm then its area is ………………….. cm2<\/sup>.
\nA) 149.3
\nB) 170.1
\nC) 137.4
\nD) 173.2
\nAnswer:
\nD) 173.2<\/p>\n

Question 98.
\nIf the diagonal of a cube is 2.5 m then volume is ……………….. m3<\/sup>.
\nA) 3.01
\nB) 4.01
\nC) 8.1
\nD) none
\nAnswer:
\nA) 3.01<\/p>\n

Question 99.
\nr2<\/sup> = 1728 then r = ………………..
\nA) 13
\nB) 19
\nC) 10
\nD) 12
\nAnswer:
\nD) 12<\/p>\n

\"TS<\/p>\n

Question 100.
\nNumber of faces of a cuboid is ………………..
\nA) 9
\nB) 10
\nC) 6
\nD) 8
\nAnswer:
\nC) 6<\/p>\n","protected":false},"excerpt":{"rendered":"

Solving these\u00a0TS 10th Class Maths Bits with Answers Chapter 10 Mensuration Bits for 10th Class will help students to build their problem-solving skills. Mensuration Bits for 10th Class Question 1. To find out quantity of water in the bottle, we measure A) surface area B) total surface area C) volume D) base area Answer: C) … Read more<\/a><\/p>\n","protected":false},"author":2,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"footnotes":""},"categories":[16],"tags":[],"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/posts\/12303"}],"collection":[{"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/comments?post=12303"}],"version-history":[{"count":1,"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/posts\/12303\/revisions"}],"predecessor-version":[{"id":12319,"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/posts\/12303\/revisions\/12319"}],"wp:attachment":[{"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/media?parent=12303"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/categories?post=12303"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/tsboardsolutions.in\/wp-json\/wp\/v2\/tags?post=12303"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}